Skip to main content

RSA Moduli with a Predetermined Portion: Techniques and Applications

  • Conference paper
Information Security Practice and Experience (ISPEC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4991))

Abstract

This paper discusses methods for generating RSA moduli with a predetermined portion. Predetermining a portion enables to represent RSA moduli in a compressed way, which gives rise to reduced transmission- and storage requirements. The first method described in this paper achieves the compression rate of known methods but is fully compatible with the fastest prime generation algorithms available on constrained devices. This is useful for devising a key escrow mechanism when RSA keys are generated on-board by tamper-resistant devices like smart cards. The second method in this paper is a compression technique yielding a compression rate of about 2/3 instead of 1/2. This results in higher savings in both transmission and storage of RSA moduli. In a typical application, a 2048-bit RSA modulus can fit on only 86 bytes (instead of 256 bytes for the regular representation). Of independent interest, the methods for prescribing bits in RSA moduli can be used to reduce the computational burden in a variety of cryptosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellare, M., Rogaway, P.: The exact security of digital signatures. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)

    Google Scholar 

  2. Bernstein, D.J.: Stop overestimating RSA bandwidth! Rump session of CRYPTO 2004, Santa Barbara, CA, USA (August 17, 2004), http://cr.yp.to/talks/2004.08.17/slides.pdf

  3. Bernstein, D.J.: Compressing RSA/Rabin keys. Invited talk, Number Theory Inspired By Cryptography (NTIBC 2005), Bannf Centre, Alberta, Canada, (November 6, 2005), http://cr.yp.to/talks/2005.11.06/slides.pdf

  4. Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices of the American Mathematical Society (AMS) 46(2), 203–213 (1999)

    MATH  MathSciNet  Google Scholar 

  5. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer, Heidelberg (1996)

    Google Scholar 

  6. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Coron, J.-S.: Finding small roots of bivariate integer polynomial equations revisited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 492–505. Springer, Heidelberg (2004)

    Google Scholar 

  8. Coron, J.-S.: Finding small roots of bivariate integer polynomial equations: A direct approach. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 379–394. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Crépeau, C., Slakmon, A.: Simple backdoors for RSA key generation. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 403–416. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Desmedt, Y.: Abuses in cryptography and how to fight them. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 375–389. Springer, Heidelberg (1990)

    Google Scholar 

  11. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory IT-22(6), 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  12. Gehrmann, C., Näslund, M., (eds.): ECRYPT yearly report on algorithms and keysizes. ECRYPT Report, D.SPA.16, Revision 1.0 (January 2006), http://www.ecrypt.eu.org/documents/D.SPA.16-1.0.pdf

  13. Girault, M., Misarski, J.-F.: Selective forgery of RSA signatures using redundancy. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 495–507. Springer, Heidelberg (1997)

    Google Scholar 

  14. Joye, M., Paillier, P.: Fast generation of prime numbers on portable devices: An update. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 160–173. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Joye, M., Paillier, P., Vaudenay, S.: Efficient generation of prime numbers. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 340–354. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Juels, A.: Provable security: Some caveats. Panel discussion, 6th ACM Conference on Computer and Communications Security (ACM CCS 1999), Singapore (November 1–4, 1999)

    Google Scholar 

  17. Knobloch, H.-J.: A smart card implementation of the Fiat-Shamir identification scheme. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 87–95. Springer, Heidelberg (1988)

    Google Scholar 

  18. Lenstra, A.K.: Generating RSA moduli with a predetermined portion. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 1–10. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  19. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 515–534 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  20. Meister, G.: On an implementation of the Mohan-Adiga algorithm. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 496–500. Springer, Heidelberg (1991)

    Google Scholar 

  21. Mohan, S.B., Adiga, B.S.: Fast algorithms for implementing RSA public key cryptosystems. Electronics Letters 21(7), 761 (1985)

    Article  Google Scholar 

  22. Naccache, D., M’Raïhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. be improved? Complexity trade-offs with the digital signature standard. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  23. Okamoto, T., Shiraishi, A.: A fast signature scheme based on quadratic inequalities. In: 1985 IEEE Symposium on Security and Privacy, pp. 123–133. IEEE Computer Society Press, Los Alamitos (1985)

    Google Scholar 

  24. Orton, G., Peppard, L., Tavares, S.: A design of a fast pipelined modular multiplier based on a diminished-radix algorithm. Journal of Cryptology 6(4), 183–208 (1993)

    Article  MATH  Google Scholar 

  25. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Google Scholar 

  26. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  27. RSA Laboratories. The RSA challenge numbers, http://www.rsa.com/rsalabs/node.asp?id=2093

  28. RSA Laboratories. RSA-200 is factored! (May 2005), http://www.rsa.com/rsalabs/node.asp?id=2879

  29. Shparlinski, I.E.: On RSA moduli with prescribed bit patterns. Designs, Codes and Cryptography 39(1), 113–122 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Simmons, G.J.: The subliminal channel and digital signatures. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 364–368. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  31. Takagi, T.: Fast RSA-type cryptosystem modulo p k q. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998)

    Google Scholar 

  32. Vanstone, S.A., Zuccherato, R.J.: Using four-prime RSA in which some of the bits are specified. Electronics Letters 30(25), 2118–2119 (1994)

    Article  Google Scholar 

  33. Vanstone, S.A., Zuccherato, R.J.: Short RSA keys and their generation. Journal of Cryptology 8(2), 101–114 (1995)

    MATH  Google Scholar 

  34. Walter, C.D.: Faster modular multiplication by operand scaling. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 313–323. Springer, Heidelberg (1992)

    Google Scholar 

  35. Young, A., Yung, M.: The dark side of “black-box” cryptography, or: Should we trust Capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103. Springer, Heidelberg (1996)

    Google Scholar 

  36. Young, A., Yung, M.: Kleptography: Using cryptography against cryptography. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer, Heidelberg (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Liqun Chen Yi Mu Willy Susilo

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joye, M. (2008). RSA Moduli with a Predetermined Portion: Techniques and Applications. In: Chen, L., Mu, Y., Susilo, W. (eds) Information Security Practice and Experience. ISPEC 2008. Lecture Notes in Computer Science, vol 4991. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79104-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79104-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79103-4

  • Online ISBN: 978-3-540-79104-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics