Abstract
This paper discusses methods for generating RSA moduli with a predetermined portion. Predetermining a portion enables to represent RSA moduli in a compressed way, which gives rise to reduced transmission- and storage requirements. The first method described in this paper achieves the compression rate of known methods but is fully compatible with the fastest prime generation algorithms available on constrained devices. This is useful for devising a key escrow mechanism when RSA keys are generated on-board by tamper-resistant devices like smart cards. The second method in this paper is a compression technique yielding a compression rate of about 2/3 instead of 1/2. This results in higher savings in both transmission and storage of RSA moduli. In a typical application, a 2048-bit RSA modulus can fit on only 86 bytes (instead of 256 bytes for the regular representation). Of independent interest, the methods for prescribing bits in RSA moduli can be used to reduce the computational burden in a variety of cryptosystems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bellare, M., Rogaway, P.: The exact security of digital signatures. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)
Bernstein, D.J.: Stop overestimating RSA bandwidth! Rump session of CRYPTO 2004, Santa Barbara, CA, USA (August 17, 2004), http://cr.yp.to/talks/2004.08.17/slides.pdf
Bernstein, D.J.: Compressing RSA/Rabin keys. Invited talk, Number Theory Inspired By Cryptography (NTIBC 2005), Bannf Centre, Alberta, Canada, (November 6, 2005), http://cr.yp.to/talks/2005.11.06/slides.pdf
Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices of the American Mathematical Society (AMS) 46(2), 203–213 (1999)
Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer, Heidelberg (1996)
Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)
Coron, J.-S.: Finding small roots of bivariate integer polynomial equations revisited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 492–505. Springer, Heidelberg (2004)
Coron, J.-S.: Finding small roots of bivariate integer polynomial equations: A direct approach. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 379–394. Springer, Heidelberg (2007)
Crépeau, C., Slakmon, A.: Simple backdoors for RSA key generation. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 403–416. Springer, Heidelberg (2003)
Desmedt, Y.: Abuses in cryptography and how to fight them. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 375–389. Springer, Heidelberg (1990)
Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory IT-22(6), 644–654 (1976)
Gehrmann, C., Näslund, M., (eds.): ECRYPT yearly report on algorithms and keysizes. ECRYPT Report, D.SPA.16, Revision 1.0 (January 2006), http://www.ecrypt.eu.org/documents/D.SPA.16-1.0.pdf
Girault, M., Misarski, J.-F.: Selective forgery of RSA signatures using redundancy. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 495–507. Springer, Heidelberg (1997)
Joye, M., Paillier, P.: Fast generation of prime numbers on portable devices: An update. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 160–173. Springer, Heidelberg (2006)
Joye, M., Paillier, P., Vaudenay, S.: Efficient generation of prime numbers. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 340–354. Springer, Heidelberg (2000)
Juels, A.: Provable security: Some caveats. Panel discussion, 6th ACM Conference on Computer and Communications Security (ACM CCS 1999), Singapore (November 1–4, 1999)
Knobloch, H.-J.: A smart card implementation of the Fiat-Shamir identification scheme. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 87–95. Springer, Heidelberg (1988)
Lenstra, A.K.: Generating RSA moduli with a predetermined portion. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 1–10. Springer, Heidelberg (1998)
Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 515–534 (1982)
Meister, G.: On an implementation of the Mohan-Adiga algorithm. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 496–500. Springer, Heidelberg (1991)
Mohan, S.B., Adiga, B.S.: Fast algorithms for implementing RSA public key cryptosystems. Electronics Letters 21(7), 761 (1985)
Naccache, D., M’Raïhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. be improved? Complexity trade-offs with the digital signature standard. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer, Heidelberg (1995)
Okamoto, T., Shiraishi, A.: A fast signature scheme based on quadratic inequalities. In: 1985 IEEE Symposium on Security and Privacy, pp. 123–133. IEEE Computer Society Press, Los Alamitos (1985)
Orton, G., Peppard, L., Tavares, S.: A design of a fast pipelined modular multiplier based on a diminished-radix algorithm. Journal of Cryptology 6(4), 183–208 (1993)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)
Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)
RSA Laboratories. The RSA challenge numbers, http://www.rsa.com/rsalabs/node.asp?id=2093
RSA Laboratories. RSA-200 is factored! (May 2005), http://www.rsa.com/rsalabs/node.asp?id=2879
Shparlinski, I.E.: On RSA moduli with prescribed bit patterns. Designs, Codes and Cryptography 39(1), 113–122 (2006)
Simmons, G.J.: The subliminal channel and digital signatures. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 364–368. Springer, Heidelberg (1985)
Takagi, T.: Fast RSA-type cryptosystem modulo p k q. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998)
Vanstone, S.A., Zuccherato, R.J.: Using four-prime RSA in which some of the bits are specified. Electronics Letters 30(25), 2118–2119 (1994)
Vanstone, S.A., Zuccherato, R.J.: Short RSA keys and their generation. Journal of Cryptology 8(2), 101–114 (1995)
Walter, C.D.: Faster modular multiplication by operand scaling. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 313–323. Springer, Heidelberg (1992)
Young, A., Yung, M.: The dark side of “black-box” cryptography, or: Should we trust Capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103. Springer, Heidelberg (1996)
Young, A., Yung, M.: Kleptography: Using cryptography against cryptography. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer, Heidelberg (1997)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Joye, M. (2008). RSA Moduli with a Predetermined Portion: Techniques and Applications. In: Chen, L., Mu, Y., Susilo, W. (eds) Information Security Practice and Experience. ISPEC 2008. Lecture Notes in Computer Science, vol 4991. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79104-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-79104-1_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79103-4
Online ISBN: 978-3-540-79104-1
eBook Packages: Computer ScienceComputer Science (R0)