Abstract
This paper investigates the language class defined by Propositional Projection Temporal Logic with star (PPTL with star). To this end, Büchi automata are first extended with stutter rule (SBA) to accept finite words. Correspondingly, ω-regular expressions are also extended (ERE) to express finite words. Consequently, by three transformation procedures between PPTL with star, SBA and ERE, PPTL with star is proved to represent exactly the full regular language.
This research is supported by the NSFC Grant No.60433010.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE Symposium on Foundations of Computer Science, pp. 46–67.2 IEEE, New York (1977)
Kripke, S.A.: Semantical analysis of modal logic I: normal propositional calculi. Z. Math. Logik Grund. Math. 9, 67–96 (1963)
Rosner, R., Pnueli, A.: A choppy logic. In: First Annual IEEE Symposium on Logic In Computer Science. LICS, pp. 306–314 (1986)
Moszkowski, B.: Reasoning about digital circuits. Ph.D Thesis, Department of Computer Science, Stanford University. TRSTAN-CS-83-970 (1983)
Duan, Z.: An Extended Interval Temporal Logic and A Framing Technique for Temporal Logic Programming. PhD thesis, University of Newcastle Upon Tyne (May 1996)
Duan, Z., Tian, C.: Decidability of Propositional Projection Temporal Logic with Infinite Models. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 521–532. Springer, Heidelberg (2007)
Duan, Z., Tian, C., Zhang, L.: A Decision Procedure for Propositional Projection Temporal Logic with Infinite Models. Acta Informatica 45, 43–78 (2008)
Tian, C., Duan, Z.: Model Checking Propositional Projection Temporal Logic Based on SPIN. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS, vol. 4789, pp. 246–265. Springer, Heidelberg (2007)
Wolper, P.L.: Temporal logic can be more expressive. Information and Control 56, 72–99 (1983)
Holzmann, G.J.: The Model Checker Spin. IEEE Trans. on Software Engineering 23(5), 279–295 (1997)
Arden, D.: Delayed-logic and finite-state machines. In: Theory of Computing Machine Design, Univ. of Michigan Press, pp. 1–35 (1960)
Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness. In: POPL 1980: Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 163–173. ACM Press, New York (1980)
Sistla, A.P.: Theoretical issues in the design and verification of distributed systems. PhD thesis, Harvard University (1983)
Vardi, M.Y., Wolper, P.: Yet another process logic. In: Clarke, E., Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 501–512. Springer, Heidelberg (1984)
Vardi, M.Y.: A temporal fixpoint calculus. In: POPL 1988, pp. 250–259 (1988)
McNaughton, R., Papert, S.A.: Counter-Free Automata (M.I.T research monograph no.65). The MIT Press, Cambridge (1971)
Barringer, H., Kuiper, R., Pnueli, A.: Now You May Compose Temporal Logic Specifications. In: Proc. 16th STOC, pp. 51–63 (1984)
Barringer, H., Kuiper, R., Pnueli, A.: The Compositional Temporal Approach to CSP-like Language. In: Proc.IFIP Conference, The Role of Abstract Models in Information Processing (January 1985)
Nguyen, V., Demers, A., Gries, D., Owicki, S.: Logic of Programs 1985. LNCS, vol. 193, pp. 237–254. Springer, Heidelberg (1985)
Nguyen, V., Gries, D., Owicki, S.: A Model and Temporal Proof System for Networks of Processes. In: Proc. 12th POPL, pp. 121–131 (1985)
Harel, D., Peleg, D.: Process Logic with Regular Formulas. Theoretical Computer Science 38, 307–322 (1985)
Tian, C., Duan, Z.: Complexity of Propositional Projection Temporal Logic with Star. Technical Report No.25, Institute of computing Theory and Technology, Xidian University, Xian P.R.China (2007)
Arden, D.: Delayed-logic and finite-state machines. In: Theory of Computing Machine Design, pp. 1–35. Univ. of Michigan Press (1960)
Milner, R.: Communicating and Mobile System: The -Calculus. Cambridge University Press, Cambridge (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tian, C., Duan, Z. (2008). Propositional Projection Temporal Logic, B\(\ddot{u}\)chi Automata and ω-Regular Expressions. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2008. Lecture Notes in Computer Science, vol 4978. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79228-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-79228-4_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79227-7
Online ISBN: 978-3-540-79228-4
eBook Packages: Computer ScienceComputer Science (R0)