Skip to main content

Indistinguishability and First-Order Logic

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4978))

  • 6419 Accesses

Abstract

The “richness” of properties that are indistinguishable from first-order properties is investigated. Indistinguishability is a concept of equivalence among properties of combinatorial structures that is appropriate in the context of testability. All formulas in a restricted class of second-order logic are shown to be indistinguishable from first-order formulas. Arbitrarily hard properties, including RE-complete properties, that are indistinguishable from first-order formulas are shown to exist. Implications on the search for a logical characterization of the testable properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allender, E., Balcázar, J.L., Immerman, N.: A first-order isomorphism theorem. SIAM J. Comput. 26(2), 539–556 (1997)

    Article  MathSciNet  Google Scholar 

  2. Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large graphs. Combinatorica 20(4), 451–476 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alon, N., Fischer, E., Newman, I., Shapira, A.: A combinatorial characterization of the testable graph properties: It’s all about regularity. In: STOC 2006: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 251–260. ACM, New York, NY, USA (2006)

    Google Scholar 

  4. Alon, N., Krivelevich, M., Newman, I., Szegedy, M.: Regular languages are testable with a constant number of queries. SIAM J. Comput. 30(6), 1842–1862 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alon, N., Shapira, A.: A characterization of the (natural) graph properties testable with one-sided error. In: Proceedings, 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2005, pp. 429–438. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  6. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC1. J. of Comput. Syst. Sci. 41(3), 274–306 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. J. of Comput. Syst. Sci. 47(3), 549–595 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chockler, H., Kupferman, O.: ω-regular languages are testable with a constant number of queries. Theoret. Comput. Sci. 329(1-3), 71–92 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Academic Press, London (2000)

    Google Scholar 

  10. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Karp, R.M. (ed.) Complexity of Computation, SIAM-AMS Proceedings, vol. VII, Amer. Mathematical Soc., pp. 43–73 (1974)

    Google Scholar 

  11. Fagin, R., Stockmeyer, L.J., Vardi, M.Y.: On monadic NP vs. monadic co-NP. Inform. Comput. 120(1), 78–92 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fischer, E.: The art of uninformed decisions. Bulletin of the European Association for Theoretical Computer Science 75(97) (October 2001); Columns: Computational Complexity

    Google Scholar 

  13. Fischer, E.: Testing graphs for colorability properties. Random Struct. Algorithms 26(3), 289–309 (2005)

    Article  MATH  Google Scholar 

  14. Freivalds, R.: Fast probabilistic algorithms. In: Becvar, J. (ed.) MFCS 1979. LNCS, vol. 74, pp. 57–69. Springer, Heidelberg (1979)

    Google Scholar 

  15. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Mathematical Systems Theory 17(1), 13–27 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Goldreich, O., Trevisan, L.: Three theorems regarding testing graph properties. Random Struct. Algorithms 23(1), 23–57 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Transactions of the American Mathematical Society 117, 285–306 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hromkovič, J.: Design and Analysis of Randomized Algorithms: Introduction to Design Paradigms. Springer, Heidelberg (2005)

    Google Scholar 

  20. Rödl, V., Schacht, M.: Property testing in hypergraphs and the removal lemma. In: STOC 2007: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 488–495. ACM, New York, NY, USA (2007)

    Chapter  Google Scholar 

  21. Ron, D.: Property testing ch. 15. In: Rajasekaran, S., Pardalos, P.M., Reif, J.H., Rolim, J. (eds.) Handbook of Randomized Computing, vol. II, ch. 15, pp. 597–649. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  22. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM J. Comput. 25(2), 252–271 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manindra Agrawal Dingzhu Du Zhenhua Duan Angsheng Li

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jordan, S., Zeugmann, T. (2008). Indistinguishability and First-Order Logic. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2008. Lecture Notes in Computer Science, vol 4978. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79228-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79228-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79227-7

  • Online ISBN: 978-3-540-79228-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics