Lecture Notes in Computer Science

4975

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Alfred Kobsa

University of California, Irvine, CA, USA

Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell

Stanford University, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

University of Dortmund, Germany

Madhu Sudan

Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos

University of California, Los Angeles, CA, USA

Doug Tygar

University of California, Berkeley, CA, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

Falai Chen Bert Jüttler (Eds.)

Advances in Geometric Modeling and Processing

5th International Conference, GMP 2008 Hangzhou, China, April 23-25, 2008 Proceedings

Volume Editors

Falai Chen

University of Science and Technology of China, Department of Mathematics Hefei, Anhui 230026, China

E-mail: chenfl@ustc.edu.cn

Bert Jüttler

Johannes Kepler University, Institute of Applied Geometry Altenberger Str. 69, 4040 Linz, Austria

E-mail: bert.juettler@jku.at

Library of Congress Control Number: 2008924624

CR Subject Classification (1998): I.3.5, I.3.7, I.4.8, G.1.2, F.2.2, I.5, G.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743

ISBN-10 3-540-79245-7 Springer Berlin Heidelberg New York ISBN-13 978-3-540-79245-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008 Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India Printed on acid-free paper SPIN: 12255566 06/3180 5 4 3 2 1 0

Preface

Geometric Modeling and Processing (GMP) is a biennial international conference on geometric modeling, simulation and computing, which provides researchers and practitioners with a forum for exchanging new ideas, discussing new applications, and presenting new solutions. Previous GMP conferences were held in Pittsburgh (2006), Beijing (2004), Tokyo (2002), and Hong Kong (2000). This, the 5th GMP conference, was held in Hangzhou, one of the most beautiful cities in China.

GMP 2008 received 113 paper submissions, covering a wide spectrum of geometric modeling and processing, such as curves and surfaces, digital geometry processing, geometric feature modeling and recognition, geometric constraint solving, geometric optimization, multiresolution modeling, and applications in computer vision, image processing, scientific visualization, robotics and reverse engineering. Each paper was reviewed by at least three members of the program committee and external reviewers. Based on the recommendations of the reviewers, 34 regular papers were selected for oral presentation, and 17 short papers were selected for poster presentation. All selected papers are included in these proceedings.

We thank all authors, external reviewers and program committee members for their great effort and contributions, which made this conference a success. We thank the conference chairs Ron Goldman and Guozhao Wang, and the steering committee members Shimin Hu, Myung-Soo Kim, Ralph Martin, Helmut Pottmann, Kenji Shimada, Hiromasa Suzuki and Wenping Wang for their consistent advice and help. Very special thanks go to the local organizer, Ligang Liu, for his hard work in organizing the conference and in managing the online review system. Very special thanks also go to Ms. Bayer, who collected the final versions of the papers. We thank the Natural Science Foundation of China and the National Key Basic Research Program of China (Project number 2004CB318000) for their financial support. We thank Zhejiang University for hosting the conference. The Activity Group on Geometric Design and Computing of the Chinese Society of Industrial and Applied Mathematics provided valuable support to the conference. Finally, we thank all of the participants for making this conference a success.

February 2008 Falai Chen
Bert Jüttler

Conference Committee

Honorary Conference Chair

Jia-Guang Sun (Tsinghua University)

Conference Co-chairs

Ron Goldman (Rice University, USA) Guozhao Wang (Zhejiang University, China)

Program Co-chairs

Bert Jüttler (Johannes Kepler University, Austria) Falai Chen (University of Sciences and Technology of China, China)

GMP Steering Committee

Myung-Soo Kim (Seoul National University, Korea) Kenji Shimada (Carnegie Mellon University, USA) Shimin Hu (Tsinghua University, China) Ralph Martin (Cardiff University, UK) Helmut Pottmann (Institut für Geometrie, TU Wien, Austria) Hiromasa Suzuki (University of Tokyo, Japan) Wenping Wang (Hong Kong University, Hong Kong)

Program Committee

Franz Aurenhammer (Technische Universität Graz, Austria)

Chandrajit Bajaj (Univ. of Texas at Austin, USA)

Hujun Bao (Zhejiang University, China)

Alexander Belyaev (Heriot-Watt University, UK)

Wim Bronsvoort (Delft University of Technology, The Netherlands)

Stephen Cameron (Oxford University, UK)

Fuhua (Frank) Cheng (University of Kentucky, USA)

Jian-Song Deng (University of Science and Technology, China)

Gershon Elber (Technion, Israel)

Gerald Farin (Arizona State Univ., USA)

Rida T. Farouki (University of California, Davis, USA)

Anath Fischer (Technion, Israel)

Michael Floater (Sintef Applied Mathematics, Norway)

Xiao-Shan Gao (Institute of Systems Science, CAS, China)

Laureano Gonzalez-Vega (University of Cantabria, Spain)

Craig Gotsman (Technion, Israel)

Xianfeng Gu (State Univ. of New York, Stony Brook, USA)

Satyandra K. Gupta (University of Maryland, USA)

Soonhung Han (KAIST, Korea)

Christoph Hoffmann (Purdue Univ., USA)

Leo Joskowicz (The Hebrew University of Jerusalem, Israel)

Tao Ju (Washington Univ., St. Louis, USA)

Satoshi Kanai (Hokkaido Univ., Japan)

Takashi Kanai (The University of Tokyo, Japan)

Deok-Soo Kim (Hanyang Univ., Korea)

Tae-Wan Kim (Seoul National Univ., Korea)

Young J. Kim (Ewha Womans University, Korea)

Leif Kobbelt (RWTH Aachen, Germany)

Haeyoung Lee (Hongik University, Korea)

In-Kwon Lee (Yonsei University, Korea)

Seungyong Lee (POSTECH, Korea)

Ligang Liu (Zhejiang University, China)

Weiyin Ma (City Univ. of Hong Kong)

Takashi Maekawa (Yokohama National University, Japan)

Hiroshi Masuda (Univ. of Tokyo, Japan)

Kenjiro Miura (Shizuoka University, Japan)

Bernard Mourrain (INRIA, Sophia Antipolis, France)

Ahmad H. Nasri (American Univ. of Beirut, Lebanon)

Gregory Nielson (Arizona State Univ., USA)

Ryutarou Ohbuchi (Yamanashi Univ., Japan)

Yutaka Ohtake (RIKEN, Japan)

Alexander Pasko (Hosei Univ., Japan)

Jorg Peters (University of Florida, USA)

Martin Peternell (Institut für Geometrie, TU Wien, Austria)

Hartmut Prautzsch (Universität Karlsruhe, Germany)

Hong Qin (State Univ. of New York, Stony Brook, USA)

Stephane Redon (INRIA Rhône-Alpes, France)

Maria Cecilia Rivara (Universidad de Chile, Chile)

Malcolm Sabin (Numerical Geometry Ltd., UK)

Nicholas Sapidis (University of The Aegean, Greece)

Alla Sheffer (University of British Columbia, Canada)

Hayong Shin (KAIST, Korea)

Zbynek Sir (Charles University, Prague, Czech Republic)

Yohanes Stefanus (Univ. of Indonesia)

Chiew-Lan Tai (Hong Kong Univ. of Science and Technology, Hong Kong)

Shigeo Takahashi (Univ. of Tokyo, Japan)

Kai Tang (Hong Kong Univ. of Science and Technology, Hong Kong)

Changhe Tu (Shandong University, China)

Tamas Varady (Geomagic Hungary, Hungary)

Johannes Wallner (Institut für Geometrie, TU Graz, Austria)

Charlie Wang (The Chinese University of Hong Kong)

Guojin Wang (Zhejiang University, China)

Jiaye Wang (Shandong University, China)

Michael Yu Wang (The Chinese University of Hong Kong)

Joe Warren (Rice University, USA)

Guoliang Xu (Institute of Computational Mathematics, Chinese Academy of Sciences (CAS))

Soji Yamakawa (Carnegie Mellon University, USA)

Xiuzi Ye (Zhejiang University, China)

Hong-Bin Zha (Peking University, China)

Caiming Zhang (Shandong University, China)

Jianmin Zheng (Nanyang Technological University)

Kun Zhou (Microsoft Research Asia, China)

Organization Committee

Ligang Liu (Chair, Zhejiang University, China)

Ruofeng Tong (Zhejiang University, China)

Xingjiang Lu (Zhejiang University, China)

Jiangyun Li (Zhejiang University, China)

Zhihao Zheng (Zhejiang University, China)

Hongxin Zhang (Zhejiang University, China)

Hongwei Lin (Zhejiang University, China)

Additional Reviewers

Abdelwahed Abbas Georgios Papaioannou

Andy Shiue Guido Brunnett

Antoine Bouthors Haijun Su
Ariel Shamir Hayong Shin
Basile Sauvage Henry Kang
Bernhard Kornberger Hongbo Fu

Binhai Zhu Iddo Hanniel

Chen Wenyu Ioannis Ivrissimtzis Chenglei Yang Jiaping Wang

David Cohen-Steiner Jieqing Tan Dong Yu Jingyi Yu

Emil Zagar Joon Kyung Seong

Esmeralda Mainar Junho Kim
Franca Giannini Junji Sone
G.P. Bonneau Karthik Ramani

Gabriel Peyre Katsuaki Kawachi

Organization

Kazuya Kobayashi Kerstin Mueller Klaus Hildebrandt Koichi Matsuda Konrad Polthier Ku-Jin Kim Kwan H. Lee Kwanghee Ko Li Guiqing Liu Shengjun Lixian Zhang Martin Bendsoe Martin Reuter

Miguel A. Otaduy

Χ

Min Gyu Choi Ming Li

Oded Ziedman
Oliver Labs
Pal Benko
Peter Salvi
Pierre Alliez
Qian-Yi Zhou
Renjiang Zhang
Rhaleb Zayer
Sagi Schein
Sang-Uk Cheon
Scott Schaefer
Seung-Hyun Yoon

Shin Yoshizawa

Sigal Ar

Spyridon Vosinakis Taek-Hee Lee Taichi Watanabe Takayuki Itoh Takis Sakkalis Tim Goodman Tomohiro Mizoguchi

Wang Yimin
Waqar Saleem
Weiwei Xu
Xia Qi
Xiaohan Shi

Xia Qi
Xiaohan Shi
Xinguo Liu
Yang Xingqiang
Yaron Lipman
Ye Duan
Yiying Tong
Yong-Jin Liu
Yongjie Zhang
Yoshiyuki Furukawa
Young Joon Ahn

Yunjin Lee Zeyun Yu Zhang Qin Zhouwang Yang

Table of Contents

I Regular Papers	
Automatic PolyCube-Maps Juncong Lin, Xiaogang Jin, Zhengwen Fan, and Charlie C.L. Wang	3
Bicubic G ¹ Interpolation of Irregular Quad Meshes Using a 4-Split Stefanie Hahmann, Georges-Pierre Bonneau, and Baptiste Caramiaux	17
Bounding the Distance between a Loop Subdivision Surface and Its Limit Mesh	33
A Carving Framework for Topology Simplification of Polygonal Meshes	47
Comparing Small Visual Differences between Conforming Meshes Zhe Bian, Shi-Min Hu, and Ralph Martin	62
Continuous Collision Detection between Two $2D$ Curved-Edge Polygons under Rational Motions	79
Controlling Torsion Sign	92
Cutting and Fracturing Models without Remeshing	107
Detection of Planar Regions in Volume Data for Topology Optimization	119
Determining Directional Contact Range of Two Convex Polyhedra Yi-King Choi, Xueqing Li, Fengguang Rong, Wenping Wang, and Stephen Cameron	127
Efficient Collision Detection Using a Dual Bounding Volume Hierarchy	143

Fast and Local Fairing of B-Spline Curves and Surfaces	155
Finite Element Methods for Geometric Modeling and Processing Using General Fourth Order Geometric Flows	164
Geodesic as Limit of Geodesics on PL-Surfaces	178
Hausdorff and Minimal Distances between Parametric Freeforms in \mathbb{R}^2 and \mathbb{R}^3	191
On Interpolation by Spline Curves with Shape Parameters	205
Lepp Terminal Centroid Method for Quality Triangulation: A Study on a New Algorithm	215
Mean Value Bézier Maps Torsten Langer, Alexander Belyaev, and Hans-Peter Seidel	231
Meaningful Mesh Segmentation Guided by the 3D Short-Cut Rule Zhi-Quan Cheng, Bao Li, Gang Dang, and Shi-Yao Jin	244
Mesh Simplification with Vertex Color	258
A Multistep Approach to Restoration of Locally Undersampled Meshes	272
Noise Removal Based on the Variation of Digitized Energy	290
Note on Industrial Applications of Hu's Surface Extension Algorithm Yu Zang, Yong-Jin Liu, and Yu-Kun Lai	304
Parameterizing Marching Cubes Isosurfaces with Natural Neighbor Coordinates	315
Parametric Polynomial Minimal Surfaces of Degree Six with Isothermal Parameter	329
Physically-Based Surface Texture Synthesis Using a Coupled Finite Element System	344

XIII

Planar Shape Matching and Feature Extraction Using Shape Profile Yong-Jin Liu, Tao Chen, Xiao-Yu Chen, Terry K. Chang, and Matthew M.F. Yuen	358
Reconstructing a Mesh from a Point Cloud by Using a Moving Parabolic Approximation	370
A Revisit to Least Squares Orthogonal Distance Fitting of Parametric Curves and Surfaces	384
Shifting Planes to Follow a Surface of Revolution	398
Slit Map: Conformal Parameterization for Multiply Connected Surfaces	410
Solving Systems of 3D Geometric Constraints with Non-rigid Clusters	423
Space-Time Curve Analogies for Motion Editing	437
Variational Skinning of an Ordered Set of Discrete 2D Balls	450
II Short Papers	
3D Mesh Segmentation Using Mean-Shifted Curvature	465
Convex Surface Interpolation	475
Deformation and Smooth Joining of Mesh Models for Cardiac Surgical Simulation	483
Digital Design for Functionally Graded Material Components Rapid Prototyping Manufacturing	491
Layer-Based Mannequin Reconstruction and Parameterization from 3D Range Data	498

Manifoldization of β -Shapes by Topology Operators	505
A Mesh Simplification Method Using Noble Optimal Positioning	512
Narrow-Band Based Radial Basis Functions Implicit Surface Reconstruction	519
Progressive Interpolation Using Loop Subdivision Surfaces	526
Protein Surface Modeling Using Active Contour Model	534
Quasi-interpolation for Data Fitting by the Radial Basis Functions Xuli Han and Muzhou Hou	541
A Shape Feature Based Simplification Method for Deforming Meshes \dots Shixue Zhang and Enhua Wu	548
Shape Representation and Invariant Description of Protein Tertiary Structure in Applications to Shape Retrieval and Classification	556
The Structure of V-System over Triangulated Domains	563
Tool Path Planning for 5-Axis Flank Milling Based on Dynamic Programming Techniques	570
Trimming Bézier Surfaces on Bézier Surfaces Via Blossoming	578
A Volumetric Framework for the Modeling and Rendering of Dynamic and Heterogeneous Scenes	585
Geometric Calibration of Projector Imagery on Curved Screen Based-on Subdivision Mesh	592

III A Comment	
A Comment on 'Constructing Regularity Feature Trees for Solid Models'	603
Author Index	605