Abstract
In a resource-constrained computing environment, it is essential to simplify complex meshes of a huge 3D model for visualization, storing and transmission. Over the past few decades, quadric error metric(QEM) has been the most popular error evaluation method for mesh simplification because of its fast computation time and good quality of approximation. However, quadric based simplification often suffers from its large memory consumption. Since recent 3D scanning systems can acquire both geometry and color data simultaneously, the size of model and memory overhead of quadric increases rapidly due to the additional color attribute. This paper proposes a new error estimation method based on QEM and half-edge collapse for simplifying a triangular mesh model which includes vertex color. Our method calculates geometric error by the original QEM, but reduces the required memory for maintaining color attributes by a new memory-efficient color error evaluation method.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Garland, M.: Multiresolution Modeling: Survey & Future Opportunities. In: Eurographics 1999, State of the Art Report (1999)
Garland, M., Heckbert, P.: Surface Simplification Using Quadric Error Metric. In: Computer Graphics(SIGGRAPH 1997 Proceeding), pp. 209–216 (1997)
Schröeder, W.J., Zarge, A., Loresen, W.E.: Decimation of Triangle Mesh. Computer Graphics(SIGGRAPH 1992 Proc.) 26(2), 65–70 (1992)
Hussain, M., Okada, Y., Niijima, K.: Efficient and Feature-Preserving Triangular Mesh. Journal of WSCG 12(1-3), 167–174 (2004)
Brodsky, D., Watson, B.: Model Simplification through Refinement. In: Graphics Interface 2000, pp. 221–228 (2000)
Ciampalini, A., Cignoni, P., Montani, C., Scopigno, R.: Multiresolution Decimation based on Global Error. The Visual Computer 13, 223–246 (1997)
Hoppe, H.: Progressive Mesh. In: Proc. SIGGRAPH 1996, pp. 99–108 (1996)
Certain, A., Popović, J., DeRose, T., Duchamp, T., Salesin, D., Stuetzle, W.: Interactive Multiresolution Surface Viewing. In: Proceedings of ACM SIGGRAPH 1996, pp. 91–98 (1996)
Garland, M., Heckbert, P.: Simplifying Surfaces with Color and Texture Using Quadric Error Metrics. In: Proc. Of IEEE Visualization 1998, pp. 263–270 (1998)
Wünsche, B.: A Survey and Evaluation of Mesh Reduction Techniques. In: Proc. IVCNZ 1998, pp. 393–398 (1998)
Kobbelt, L., Campagna, S., Seidel, H.P.: A General Framework for Mesh Decimation. In: Graphics Interface 1998 proceedings, pp. 43–50 (1998)
Garland, M., Heckbert, P.: Surface Simplification Using Quadric Error Metric. In: Visualization 98 proceedings, IEEE, pp. 263–269 (1998)
Hoppe, H.: New Quadric Metric for Simplifying Meshes with Appearance Attributes. In: IEEE Visualization 1999, pp. 59–66 (1999)
Cignoni, P., Rocchini, C., Scopigno, R.: Measuring Error on Simplified Surfaces. Computer Graphics Forum 17(2), 167–174 (1998)
Kalvin, A.D., Taylor, R.H.: Superfaces: Polygonal Mesh Simplification with Bounded Error. IEEE Computer Graphics and Applications 16(3), 64–77 (1996)
Garland, M., Willmott, A., Heckbert, P.S.: Hierarchical Face Clustering on Polygonal Surfaces. In: Proceedings of 2001 ACM Symposium on Interactive 3D Graphics, pp. 49–58 (2001)
Klein, R., Krämer, J.: Multiresolution Representations for Surface Meshes. In: Proceedings of Spring Conference on Computer Graphics 1997, pp. 57–66 (1997)
Hamann, B.: A Data Reduction Scheme for Triangulated Surfaces. Computer Aided Geometric Design 11, 197–214 (1994)
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh Optimization. In: Proceddings of SIGGRAPH 1993, pp. 19–26 (1993)
Kim, S.J., Kim, S.K., Kim, C.H.: Discrete Differential Error Metric for Surface Simplification. In: Proceedings of the 10th Pacific Conference on Computer Graphics and Applications, pp. 276–283 (2002)
De Floriani, L., Magillo, P., Puppo, E., Sobrero, D.: A multi-resolution topological representation for non-manifold meshes. Computer Aided Design 36(2), 141–159 (2004)
De Floriani, L., Hui, A.: A Dimension-Independent Representation for Multiresolution Nonmanifold Meshes. Journal of Computing and Information Science in Engineering 6(4), 397–404 (2006)
Cignoni, P., Montani, C., Rocchini, C., Scopigno, R.: Interactive Multiresolution Surface Viewing. IEEE Transactions on Visualization and Computer Graphics 9(4), 525–537 (2003)
Rigiroli, P., Campadelli, P., Pedotti, A., Borghese, N.A.: Mesh refinement with color attributes. Computers & Graphics 25, 449–461 (2001)
Fahn, C.-.S., Chen, H.-.K., Shiau, Y.-.H.: Polygonal Mesh Simplification with Face Color and Boundary Edge Preservation Using Quadric Error Metric. In: Proceedings of IEEE Fourth International Symposium on Multimedia Software Engineering, pp. 174–181 (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, H.S., Choi, H.K., Lee, K.H. (2008). Mesh Simplification with Vertex Color. In: Chen, F., Jüttler, B. (eds) Advances in Geometric Modeling and Processing. GMP 2008. Lecture Notes in Computer Science, vol 4975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79246-8_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-79246-8_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79245-1
Online ISBN: 978-3-540-79246-8
eBook Packages: Computer ScienceComputer Science (R0)