Skip to main content

Mesh Simplification with Vertex Color

  • Conference paper
Advances in Geometric Modeling and Processing (GMP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4975))

Included in the following conference series:

  • 2769 Accesses

Abstract

In a resource-constrained computing environment, it is essential to simplify complex meshes of a huge 3D model for visualization, storing and transmission. Over the past few decades, quadric error metric(QEM) has been the most popular error evaluation method for mesh simplification because of its fast computation time and good quality of approximation. However, quadric based simplification often suffers from its large memory consumption. Since recent 3D scanning systems can acquire both geometry and color data simultaneously, the size of model and memory overhead of quadric increases rapidly due to the additional color attribute. This paper proposes a new error estimation method based on QEM and half-edge collapse for simplifying a triangular mesh model which includes vertex color. Our method calculates geometric error by the original QEM, but reduces the required memory for maintaining color attributes by a new memory-efficient color error evaluation method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Garland, M.: Multiresolution Modeling: Survey & Future Opportunities. In: Eurographics 1999, State of the Art Report (1999)

    Google Scholar 

  2. Garland, M., Heckbert, P.: Surface Simplification Using Quadric Error Metric. In: Computer Graphics(SIGGRAPH 1997 Proceeding), pp. 209–216 (1997)

    Google Scholar 

  3. Schröeder, W.J., Zarge, A., Loresen, W.E.: Decimation of Triangle Mesh. Computer Graphics(SIGGRAPH 1992 Proc.) 26(2), 65–70 (1992)

    Google Scholar 

  4. Hussain, M., Okada, Y., Niijima, K.: Efficient and Feature-Preserving Triangular Mesh. Journal of WSCG 12(1-3), 167–174 (2004)

    Google Scholar 

  5. Brodsky, D., Watson, B.: Model Simplification through Refinement. In: Graphics Interface 2000, pp. 221–228 (2000)

    Google Scholar 

  6. Ciampalini, A., Cignoni, P., Montani, C., Scopigno, R.: Multiresolution Decimation based on Global Error. The Visual Computer 13, 223–246 (1997)

    Article  Google Scholar 

  7. Hoppe, H.: Progressive Mesh. In: Proc. SIGGRAPH 1996, pp. 99–108 (1996)

    Google Scholar 

  8. Certain, A., Popović, J., DeRose, T., Duchamp, T., Salesin, D., Stuetzle, W.: Interactive Multiresolution Surface Viewing. In: Proceedings of ACM SIGGRAPH 1996, pp. 91–98 (1996)

    Google Scholar 

  9. Garland, M., Heckbert, P.: Simplifying Surfaces with Color and Texture Using Quadric Error Metrics. In: Proc. Of IEEE Visualization 1998, pp. 263–270 (1998)

    Google Scholar 

  10. Wünsche, B.: A Survey and Evaluation of Mesh Reduction Techniques. In: Proc. IVCNZ 1998, pp. 393–398 (1998)

    Google Scholar 

  11. Kobbelt, L., Campagna, S., Seidel, H.P.: A General Framework for Mesh Decimation. In: Graphics Interface 1998 proceedings, pp. 43–50 (1998)

    Google Scholar 

  12. Garland, M., Heckbert, P.: Surface Simplification Using Quadric Error Metric. In: Visualization 98 proceedings, IEEE, pp. 263–269 (1998)

    Google Scholar 

  13. Hoppe, H.: New Quadric Metric for Simplifying Meshes with Appearance Attributes. In: IEEE Visualization 1999, pp. 59–66 (1999)

    Google Scholar 

  14. Cignoni, P., Rocchini, C., Scopigno, R.: Measuring Error on Simplified Surfaces. Computer Graphics Forum 17(2), 167–174 (1998)

    Article  Google Scholar 

  15. Kalvin, A.D., Taylor, R.H.: Superfaces: Polygonal Mesh Simplification with Bounded Error. IEEE Computer Graphics and Applications 16(3), 64–77 (1996)

    Article  Google Scholar 

  16. Garland, M., Willmott, A., Heckbert, P.S.: Hierarchical Face Clustering on Polygonal Surfaces. In: Proceedings of 2001 ACM Symposium on Interactive 3D Graphics, pp. 49–58 (2001)

    Google Scholar 

  17. Klein, R., Krämer, J.: Multiresolution Representations for Surface Meshes. In: Proceedings of Spring Conference on Computer Graphics 1997, pp. 57–66 (1997)

    Google Scholar 

  18. Hamann, B.: A Data Reduction Scheme for Triangulated Surfaces. Computer Aided Geometric Design 11, 197–214 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh Optimization. In: Proceddings of SIGGRAPH 1993, pp. 19–26 (1993)

    Google Scholar 

  20. Kim, S.J., Kim, S.K., Kim, C.H.: Discrete Differential Error Metric for Surface Simplification. In: Proceedings of the 10th Pacific Conference on Computer Graphics and Applications, pp. 276–283 (2002)

    Google Scholar 

  21. De Floriani, L., Magillo, P., Puppo, E., Sobrero, D.: A multi-resolution topological representation for non-manifold meshes. Computer Aided Design 36(2), 141–159 (2004)

    Article  Google Scholar 

  22. De Floriani, L., Hui, A.: A Dimension-Independent Representation for Multiresolution Nonmanifold Meshes. Journal of Computing and Information Science in Engineering 6(4), 397–404 (2006)

    Article  Google Scholar 

  23. Cignoni, P., Montani, C., Rocchini, C., Scopigno, R.: Interactive Multiresolution Surface Viewing. IEEE Transactions on Visualization and Computer Graphics 9(4), 525–537 (2003)

    Article  Google Scholar 

  24. Rigiroli, P., Campadelli, P., Pedotti, A., Borghese, N.A.: Mesh refinement with color attributes. Computers & Graphics 25, 449–461 (2001)

    Article  Google Scholar 

  25. Fahn, C.-.S., Chen, H.-.K., Shiau, Y.-.H.: Polygonal Mesh Simplification with Face Color and Boundary Edge Preservation Using Quadric Error Metric. In: Proceedings of IEEE Fourth International Symposium on Multimedia Software Engineering, pp. 174–181 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Falai Chen Bert Jüttler

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, H.S., Choi, H.K., Lee, K.H. (2008). Mesh Simplification with Vertex Color. In: Chen, F., Jüttler, B. (eds) Advances in Geometric Modeling and Processing. GMP 2008. Lecture Notes in Computer Science, vol 4975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79246-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79246-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79245-1

  • Online ISBN: 978-3-540-79246-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics