Abstract
This paper proposes a mesh simplification method by finding the optimal positions of vertices. It generates a Bézier patch around the collapsed edge and finds the optimal position based on visual importance and curvature. It successfully maintains the geometry and topology of the model even when the size of the model is reduced to less than 5 % of the original model. Our method uses QEM for the error measure. It can be applied to usual mesh simplification but also to mesh parameterization and remeshing.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boyd, C., Peters, J., Mitchell, J.L., Vlachos, A.: Curved PN triangles. In: Proc.2001 Symposium on Interactive 3D graphics, pp. 159–166. ACM Press, New York (2001)
Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proc. SIGGRAPH 1997, pp. 209–216 (1997)
Schroeder, W.J., Zarge, A., Lorensen, W.E.: Decimation of triangle mesh. In: Proc. SIGGRAPH 1992, pp. 65–70 (1992)
Ciampalini, A., Cigonini, P., Montani, C., Scopigno, R.: Multiresolution decimation based on global error. The Visual Computer, 228–246 (1997)
Kobbelt, L., Campagna, S., Seidel, H.P.: A general framework for mesh decimation. In: Proc. Graphics Interface 1998, pp. 43–50 (1998.4)
Hoppe, H.: Progressive meshes. In: Proc. SIGGRAPH 1996, pp. 99–108 (1996)
Guéziec, A.: Surface of irregular surface meshes in 3D medical images. In: IEEE Visualization 1998 Conference Proceedings, pp. 271–278 (1998)
Garland, M., Heckbert, P.S.: Simplifying surfaces with color and texture using quadric error metrics. In: IEEE Visualization 1998 Conference Proceedings, pp. 263–269 (1998)
Garland, M., Zhou, Y.: Quadric-based simplification in any dimension. ACM Trans. Graphics 24(2), 209–239 (2005)
Lindstrom, P., Turk, G.: Fast and memory efficient polygonal simplification. In: IEEE Visualization 1998 Conference Proceedings, pp. 279–286 (1998)
Heckbert, P.S., Garland, M.: Survey of polygonal surface simplification algorithm. In: Multiresolution Surface Modeling Course Note. ACM SIGGRAPH (1997)
Guèziec, A.: Surface simplification with variable tolerance. In: Second Int. Symp. on Medical Robotics and Computer Assisted Surgery (MRCAS 1995), pp. 132–139 (1995)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Choi, H.K., Kim, H.S., Lee, K.H. (2008). A Mesh Simplification Method Using Noble Optimal Positioning. In: Chen, F., Jüttler, B. (eds) Advances in Geometric Modeling and Processing. GMP 2008. Lecture Notes in Computer Science, vol 4975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79246-8_41
Download citation
DOI: https://doi.org/10.1007/978-3-540-79246-8_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79245-1
Online ISBN: 978-3-540-79246-8
eBook Packages: Computer ScienceComputer Science (R0)