Skip to main content

A Mesh Simplification Method Using Noble Optimal Positioning

  • Conference paper
Advances in Geometric Modeling and Processing (GMP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4975))

Included in the following conference series:

Abstract

This paper proposes a mesh simplification method by finding the optimal positions of vertices. It generates a Bézier patch around the collapsed edge and finds the optimal position based on visual importance and curvature. It successfully maintains the geometry and topology of the model even when the size of the model is reduced to less than 5 % of the original model. Our method uses QEM for the error measure. It can be applied to usual mesh simplification but also to mesh parameterization and remeshing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boyd, C., Peters, J., Mitchell, J.L., Vlachos, A.: Curved PN triangles. In: Proc.2001 Symposium on Interactive 3D graphics, pp. 159–166. ACM Press, New York (2001)

    Google Scholar 

  2. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proc. SIGGRAPH 1997, pp. 209–216 (1997)

    Google Scholar 

  3. Schroeder, W.J., Zarge, A., Lorensen, W.E.: Decimation of triangle mesh. In: Proc. SIGGRAPH 1992, pp. 65–70 (1992)

    Google Scholar 

  4. Ciampalini, A., Cigonini, P., Montani, C., Scopigno, R.: Multiresolution decimation based on global error. The Visual Computer, 228–246 (1997)

    Google Scholar 

  5. Kobbelt, L., Campagna, S., Seidel, H.P.: A general framework for mesh decimation. In: Proc. Graphics Interface 1998, pp. 43–50 (1998.4)

    Google Scholar 

  6. Hoppe, H.: Progressive meshes. In: Proc. SIGGRAPH 1996, pp. 99–108 (1996)

    Google Scholar 

  7. Guéziec, A.: Surface of irregular surface meshes in 3D medical images. In: IEEE Visualization 1998 Conference Proceedings, pp. 271–278 (1998)

    Google Scholar 

  8. Garland, M., Heckbert, P.S.: Simplifying surfaces with color and texture using quadric error metrics. In: IEEE Visualization 1998 Conference Proceedings, pp. 263–269 (1998)

    Google Scholar 

  9. Garland, M., Zhou, Y.: Quadric-based simplification in any dimension. ACM Trans. Graphics 24(2), 209–239 (2005)

    Article  Google Scholar 

  10. Lindstrom, P., Turk, G.: Fast and memory efficient polygonal simplification. In: IEEE Visualization 1998 Conference Proceedings, pp. 279–286 (1998)

    Google Scholar 

  11. Heckbert, P.S., Garland, M.: Survey of polygonal surface simplification algorithm. In: Multiresolution Surface Modeling Course Note. ACM SIGGRAPH (1997)

    Google Scholar 

  12. Guèziec, A.: Surface simplification with variable tolerance. In: Second Int. Symp. on Medical Robotics and Computer Assisted Surgery (MRCAS 1995), pp. 132–139 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Falai Chen Bert Jüttler

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choi, H.K., Kim, H.S., Lee, K.H. (2008). A Mesh Simplification Method Using Noble Optimal Positioning. In: Chen, F., Jüttler, B. (eds) Advances in Geometric Modeling and Processing. GMP 2008. Lecture Notes in Computer Science, vol 4975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79246-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79246-8_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79245-1

  • Online ISBN: 978-3-540-79246-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics