Skip to main content

An Integrated Diagnostic Process for Automotive Systems

  • Chapter
Computational Intelligence in Automotive Applications

The increased complexity and integration of vehicle systems has resulted in greater difficulty in the identification of malfunction phenomena, especially those related to cross-subsystem failure propagation and thus made system monitoring an inevitable component of future vehicles. Consequently, a continuous monitoring and early warning capability that detects, isolates and estimates size or severity of faults (viz., fault detection and diagnosis), and that relates detected degradations in vehicles to accurate remaining life-time predictions (viz., prognosis) is required to minimize downtime, improve resource management via condition-based maintenance, and minimize operational costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Shalom Y, Li XR, and Kirubarajan T (2001) Estimation with Applications to Tracking and Navigation. Wiley, New York, 2001

    Book  Google Scholar 

  2. Basseville M and Nikiforov IV (1993) Detection of Abrupt Changes. Prentice-Hall, New Jersey

    Google Scholar 

  3. Bishop CM (2006) Pattern Recognition and Machine Learning. Springer, Berlin Heidelberg New York

    Book  MATH  Google Scholar 

  4. Bohr J (1998) Open systems approach – integrated diagnostics demonstration program. NDIA Systems Engineering and Supportability Conference and Workshop, http://www.dtic.mil/ndia/support/bohr.pdf

  5. Bro R (1996) Multiway Calibration. Multilinear PLS. Journal of Chemometrics 10:47–61

    Article  Google Scholar 

  6. Chelidze D (2002) Multimode damage tracking and failure prognosis in electro mechanical system. SPIE Conference Proceedings, pp 1–12

    Google Scholar 

  7. Chelidze D, Cusumano JP, and Chatterjee A (2002) Dynamical systems approach to damage evolution tracking, part I: The experimental method. Journal of Vibration and Acoustics 124:250–257

    Article  Google Scholar 

  8. Chen J, Liu K (2002) On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chemical Engineering Science 57:63–75

    Article  Google Scholar 

  9. Choi K, Luo J, Pattipati K, Namburu M, Qiao L, and Chigusa S (2006) Data reduction techniques for intelligent fault diagnosis in automotive systems. Proceedings of IEEE AUTOTESTCON, Anaheim, CA, pp 66–72

    Google Scholar 

  10. Choi K, Singh S, Kodali A, Pattipati K, Namburu M, Chigusa S, and Qiao L (2007) A novel Bayesian approach to classifier fusion for fault diagnosis in automotive systems. Proceedings of IEEE AUTOTESTCON, Baltimore, MD, pp 260–269

    Google Scholar 

  11. Deb S, Pattipati K, Raghavan V, Shakeri M, and Shrestha R (1995) Multi-signal flow graphs: A novel approach for system testability analysis and fault diagnosis. IEEE Aerospace and Electronics Magazine, pp 14–25

    Google Scholar 

  12. Deb S, Pattipati K, and Shrestha R (1997) QSI’s Integrate diagnostics toolset. Proceedings of the IEEE AUTOTESTCON, Anaheim, CA, pp 408–421

    Google Scholar 

  13. Deb S, Ghoshal S, Mathur A, and Pattipati K (1998) Multi-signal modeling for diagnosis, FMECA and reliability. IEEE Systems, Man, and Cybernetics Conference, San Diego, CA

    Google Scholar 

  14. Donat W (2007) Data Visualization, Data Reduction, and Classifier Output Fusion for Intelligent Fault Detection and Diagnosis. M.S. Thesis, University of Connecticut

    Google Scholar 

  15. Duda RO, Hart PE, and Stork DG (2001) Pattern Classification (2nd edn.). Wiley, New York

    MATH  Google Scholar 

  16. Fodor K, A survey of dimension reduction techniques. Available: http://www.llnl.gov/CASC/sapphire/pubs/148494.pdf

  17. Frank PM (1994) On-line fault detection in uncertain nonlinear systems using diagnostic observers: a survey. International Journal of System Science 25:2129–2154

    Article  MATH  Google Scholar 

  18. Freund Y and Schapire RE (1996) Experiments with a new boosting algorithm. Machine Learning: Proceedings of the Thirteenth International Conference

    Google Scholar 

  19. Fukazawa M (2001) Development of PC-based HIL simulator CRAMAS 2001, FUJITSU TEN Technical Journal 19:12–21

    Google Scholar 

  20. Garcia EA and Frank P (1997) Deterministic nonlinear observer based approaches to fault diagnosis: a survey. Control Engineering Practice 5:663–670

    Article  Google Scholar 

  21. Gertler J (1995) Fault detection and isolation using parity relations. Control Engineering Practice 5:1385–1392

    Google Scholar 

  22. Gertler J and Monajmey R (1995) Generating directional residuals with dynamic parity relations. Automatica 33:627–635

    Article  Google Scholar 

  23. Higuchi T, Kanou K, Imada S, Kimura S, and Tarumoto T (2003) Development of rapid prototype ECU for power train control. FUJITSU TEN Technical Journal 20:41–46

    Google Scholar 

  24. Isermann R (1984) Process fault detection based on modeling and estimation methods: a survey. Automatica 20:387–404

    Article  MATH  Google Scholar 

  25. Isermann R (1993) Fault diagnosis of machines via parameter estimation and knowledge processing-tutorial paper. Automatica 29:815–835

    Article  MATH  MathSciNet  Google Scholar 

  26. Isermann R (1997) Supervision, fault-detection and fault-diagnosis methods – an introduction. Control Engineering Practice 5:639–652

    Article  Google Scholar 

  27. Jackson JE (1991) A User’s Guide to Principal Components. Wiley, New York

    Book  MATH  Google Scholar 

  28. Johannesson (1998) Rainflow cycles for switching processes with Markov structure. Probability in the Engineering and Informational Sciences 12:143–175

    Article  MATH  MathSciNet  Google Scholar 

  29. Keiner W (1990) A navy approach to integrated diagnostics. Proceedings of the IEEE AUTOTESTCON, pp 443–450

    Google Scholar 

  30. Kodali A, Donat W, Singh S, Choi K, and Pattipati K (2008) Dynamic fusion and parameter optimization of multiple classifier systems. Proceedings of GT 2008, Turbo Expo 2008, Berlin, Germany

    Google Scholar 

  31. Kuncheva LI (2004) Combining Pattern Classifiers, Wiley, New York

    Book  MATH  Google Scholar 

  32. Ljung L (1987) System Identification: Theory for the User, Prentice-Hall, New Jersey

    MATH  Google Scholar 

  33. Luo J, Tu F, Azam M, Pattipati K, Qiao L, and Kawamoto M (2003) Intelligent model-based diagnostics for vehicle health management. Proceedings of SPIE Conference, Orlando, pp 13–26

    Google Scholar 

  34. Luo J, Tu H, Pattipati K, Qiao L, and Chigusa S (2006) Graphical models for diagnostic knowledge representation and inference. IEEE Instrument and Measurement Magazine 9:45–52

    Article  Google Scholar 

  35. Luo J, Pattipati K, Qiao L, and Chigusa S (2007) An integrated diagnostic development process for automotive engine control systems. IEEE Transactions on Systems, Man, and Cybernetics: Part C – Applications and Reviews 37:1163–1173

    Article  Google Scholar 

  36. Luo J, Namburu M, Pattipati K, Qiao L, and Chigusa S (2008) Integrated model-based and data-driven diagnosis of automotive anti-lock braking systems. IEEE System, Man, and Cybernetics – Part A: Systems and Humans

    Google Scholar 

  37. Luo J, Pattipati K, Qiao L and Chigusa S (2008) Model-based prognostic techniques applied to a suspension system. IEEE Transactions on Systems, Man, and Cybernetics – Part C: Applications and Reviews

    Google Scholar 

  38. Namburu M (2006) Model-Based and Data-Driven Techniques and Their Application to Fault Detection and Diagnosis in Engineering Systems and Information Retrieval. M.S. Thesis, University of Connecticut

    Google Scholar 

  39. Nomikos P (1996) Detection and diagnosis of abnormal batch operations based on multi-way principal component analysis. ISA Transactions 35:259–266

    Article  Google Scholar 

  40. Nyberg M and Nielsen L (1997) Model based diagnosis for the air intake system of the SI-engine. SAE Transactions. Journal of Commercial Vehicles 106:9–20

    Google Scholar 

  41. Pattipati K (2003) Combinatorial optimization algorithms for fault diagnosis in complex systems. International Workshop on IT-Enabled Manufacturing, Logistics and Supply Chain Management, Bangalore, India

    Google Scholar 

  42. Pattipati K and Alexandridis M (1990) Application of heuristic search and information theory to sequential fault diagnosis. IEEE Transactions on Systems, Man, and Cybernetics – Part A 20:872–887

    Article  MATH  Google Scholar 

  43. Patton RJ, Frank PM, and Clark RN (2000) Issues of Fault Diagnosis for Dynamic Systems, Springer, Berlin Heidelberg New York London

    Google Scholar 

  44. Pete A, Pattipati K, and Kleinman DL (1994) Optimization of detection networks with generalized event structures. IEEE Transactions on Automatic Control 1702–1707

    Google Scholar 

  45. Phadke MS (1989) Quality Engineering Using Robust Design. Prentice Hall New Jersey

    Google Scholar 

  46. Phelps E and Willett P (2002) Useful lifetime tracking via the IMM. SPIE Conference Proceedings, pp 145–156, 2002

    Google Scholar 

  47. QSI website, http://www.teamsqsi.com

  48. Raghavan V, Shakeri M, and Pattipati K (1999) Test sequencing algorithms with unreliable tests. IEEE Transactions on Systems, Man, and Cybernetics – Part A 29:347–357

    Article  Google Scholar 

  49. Raghavan V, Shakeri M, and Pattipati K (1999) Optimal and near-optimal test sequencing algorithms with realistic test models. IEEE Transactions on Systems, Man, and Cybernetics – Part A 29:11–26

    Article  Google Scholar 

  50. Rasmus B (1996) Multiway calibration. Multilinear PLS. Journal of Chemometrics 10:259–266

    Google Scholar 

  51. Ruan S, Tu F, Pattipati K, and Patterson-Hine A (2004) On a multimode test sequencing problem. IEEE Transactions on Systems, Man and Cybernetics – Part B 34:1490–1499

    Article  Google Scholar 

  52. Schroder D (2000) Intelligent Observer and Control Design for Nonlinear Systems, Springer, Berlin Heidelberg New York

    Google Scholar 

  53. Shakeri M (1998) Advances in System Fault Modeling and Diagnosis. Ph.D. Thesis, University of Connecticut

    Google Scholar 

  54. Simani S, Fantuzzi C, and Patton RJ (2003) Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques. Springer, Berlin Heidelberg New York London

    Google Scholar 

  55. Singh S, Choi K, Kodali A, Pattipati K, Namburu M, Chigusa S, and Qiao L (2007) Dynamic classifier fusion in automotive systems. IEEE SMC Conference, Montreal, Canada

    Google Scholar 

  56. Singh S, Kodali A, Choi K, Pattipati K, Namburu M, Chigusa S, Prokhorov DV, and Qiao L (2008) Dynamic multiple fault diagnosis: mathematical formulations and solution techniques. accepted for IEEE Trans. on SMC – Part A. To appear

    Google Scholar 

  57. Sobczyk K and Spencer B (1993) Random Fatigue: From Data to Theory. Academic, San Diego

    Google Scholar 

  58. Sobczyk K and Trebicki J (2000) Stochastic dynamics with fatigue induced stiffness degradation. Probabilistic Engineering Mechanics 15:91–99

    Article  Google Scholar 

  59. Tang ZB, Pattipati K, and Kleinman DL (1991) Optimization of detection networks: Part I – tandem structures. IEEE Transactions on Systems, Man, and Cybernetics: Special Issue on Distributed Sensor Networks 21:1045–1059

    Google Scholar 

  60. Tang ZB, Pattipati K, and Kleinman DL (1992) A Distributed M-ary hypothesis testing problem with correlated observations. IEEE Transactions on Automatic Control, 196:32 pp 1042–1046

    Article  MathSciNet  Google Scholar 

  61. Terry B and Lee S (1995) What is the prognosis on your maintenance program. Engineering and Mining Journal, 196:32

    Google Scholar 

  62. Unsal C and Kachroo P (1999) Sliding mode measurement feedback control for antilock braking system. IEEE Transactions on Control Systems Technology 7:271–281

    Article  Google Scholar 

  63. Wold S, Geladi P, Esbensen K, and Ohman J (1987) Principal Component Analysis Chemometrics and Intelligent Laboratory System 2:37–52

    Article  Google Scholar 

  64. Yoshimura T, Nakaminami K, Kurimoto M, and Hino J (1999) Active suspension of passenger cars using linear and fuzzy logic controls. Control Engineering Practice 41:41–47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pattipati, K. et al. (2008). An Integrated Diagnostic Process for Automotive Systems. In: Prokhorov, D. (eds) Computational Intelligence in Automotive Applications. Studies in Computational Intelligence, vol 132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79257-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79257-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79256-7

  • Online ISBN: 978-3-540-79257-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics