Abstract
In this paper, a magnetic resonance image (MRI) segmentation method based on two-dimensional exponential entropy (2DEE) and parameter free particle swarm optimization (PSO) is proposed. The 2DEE technique does not consider only the distribution of the gray level information but also takes advantage of the spatial information using the 2D-histogram. The problem with this method is its time-consuming computation that is an obstacle in real time applications for instance. We propose to use a parameter free PSO algorithm called TRIBES, that was proved efficient for combinatorial and non convex optimization. The experiments on segmentation of MRI images proved that the proposed method can achieve a satisfactory segmentation with a low computation cost.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Drapaca, C.S., Cardenas, V., Studholme, C.: Segmentation of tissue boundary evolution from brain MR image sequences using multi-phase level sets. Computer Vision and Image Understanding 100, 312–329 (2005)
Qiao, Y., Hu, Q., Qian, G., Luo, S., Nowinski, W.L.: Thresholding based on variance and intensity contrast. Pattern Recognition 40, 596–608 (2007)
Warfield, S.K., Kaus, M., Jolesz, F.A., Kikinis, R.: Adaptive template moderate spatially varying statistical classification. Medical Image analysis 4, 43–55 (2000)
Rueckert, D., Hajnal, J.V., Rutherford, M.A., Murgasova, M., Dyet, L.E., Edwards, D.: Segmentation of Brain MRI in Young Children. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 687–694. Springer, Heidelberg (2006)
Song, Z., Tustison, N., Avants, B., Gee, J.C.: Integrated Graph Cuts for Brain MRI Segmentation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 831–838. Springer, Heidelberg (2006)
Kamber, M., Shinghal, R., Collins, D.L., Francis, G.S., Evans, A.C.: Model-based segmentation of multiple sclerosis lesions in magnetic resonance brain images. IEEE Trans. on Med. Imaging 14, 442–453 (2000)
Cocosco, C.A., Zijdenbos, A.P., Evans, A.C.: A fully automatic and robust brain MRI Tissue Classification. Medical Image Analysis 7, 513–527 (2003)
Zografos, K., Nadarajah, S.: Survival Exponential Entropies. IEEE Trans. on Information Theory 51, 1239–1246 (2005)
Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13, 146–165 (2004)
Tao, W., Tian, J., Liu, J.: Image segmentation by three level thresholding based on maximum fuzzy entropy and genetic algorithm. Pattern Recognition Letters 24, 3069–3078 (2004)
Peng-Yeng, Y.: Multilevel minimum cross entropy threshold selection based on particle swarm optimization. Applied Mathematics and Computation 184, 503–513 (2007)
Zahara, E., Fan, S.S., Tsai, D.: Optimal multi-thresholding using a hybrid optimisation approach. Pattern Recognition Letters 26, 1082–1095 (2004)
Synder, W., Bilbro, G.: Optimal thresholding: A new approach. Pattern Recognition Letters 11, 803–810 (1990)
Clerc, M.: TRIBES - Un exemple d’optimisation par essaim particulaire sans paramètres de contrôle. In: OEP 2003, Paris (2003)
Ye, X.F., Zhang, W.J., Yang, Z.L.: Adaptive Particle Swarm Optimization on Individual Level. In: Int. Conf. on Signal Processing (ICSP), Beijing, China, pp. 1215–1218 (2002)
Zhang, W., Liu, Y., Clerc, M.: An adaptive PSO algorithm for real power optimization. In: APSCOM (Advances in Power System Control Operation and Management), S6: Application of Artificial Intelligence Technique (part I), Hong Kong, pp. 302–307 (2003)
Yasuda, K., Iwasaki., N.: Adaptive particle swarm optimization using velocity information of swarm. In: IEEE Conference on System, Man and Cybernetics, The Hague, Netherlands, pp. 3475–3481 (2004)
Nakib, A., Oulhadj, H., Siarry, P.: Microscopic image segmentation based on two-dimensional exponential entropy with hybrid microcanonical annealing. In: Proceedings of Int. Conf. IAPR- MVA2007, Tokyo, pp. 420–423 (2007)
Nakib, A., Oulhadj, H., Siarry, P.: Image histogram thresholding based on multiobjective optimization. Signal processing 87, 2516–2534 (2007)
Bazi, Y., Bruzzone, L., Melgani, F.: Image thresholding based on the EM algorithm and the generalized Gaussian distribution. Patter Recognition Journal 40, 619–634 (2007)
Ng, H.: Automatic thresholding for defect detection. Pattern Recognition Letters 27, 1644–1649 (2006)
Sahoo, K.P., Arora, G.: Image thresholding using two dimensional Tsallis-Havrda-Charvat entropy. Pattern Recognition Letters 27, 520–528 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nakib, A., Cooren, Y., Oulhadj, H., Siarry, P. (2008). Magnetic Resonance Image Segmentation Based on Two-Dimensional Exponential Entropy and a Parameter Free PSO. In: Monmarché, N., Talbi, EG., Collet, P., Schoenauer, M., Lutton, E. (eds) Artificial Evolution. EA 2007. Lecture Notes in Computer Science, vol 4926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79305-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-79305-2_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79304-5
Online ISBN: 978-3-540-79305-2
eBook Packages: Computer ScienceComputer Science (R0)