Skip to main content

On-the-Fly Rotamer Pair Energy Evaluation in Protein Design

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4983))

Included in the following conference series:

Abstract

Most existing algorithms for protein design, including those in the Rosetta molecular modeling program, precompute energies for rotamer pairs, since these energies can be examined repeatedly. Simulated annealing algorithms, however, do not examine these energies with the same frequency; while some are examined many times, others may not be examined at all. This paper compares strategies for computing these energies on the fly and caching computed energy values that are likely to be reused. By avoiding the expense of computing pair energies that are not examined by simulated annealing, we show that some caching strategies not only improve running time in design, but also use 90% less memory, which allows design computations to be performed on memory-limited machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dunbrack Jr., R.L., Karplus, M.: Backbone dependant rotamer library for proteins: Application to side chain prediction. Journal of Molecular Biology 230, 543–574 (1993)

    Article  Google Scholar 

  2. Lovell, S.C., Word, J.M., Richardson, J.S., Richardson, D.C.: The penultimate rotamer library. Proteins: Structure Function and Genetics 40, 389–408 (2000)

    Article  Google Scholar 

  3. Looger, L.L., Dwyer, M.A., Smith, J.J., Hellinga, H.W.: Computational design of receptor and sensor proteins with novel functions. Nature 423, 185–190 (2003)

    Article  Google Scholar 

  4. Kuhlman, B., O’Neill, J.W., Kim, D.E., Zhang, K.Y., Baker, D.: Accurate computer-based design of a new backbone conformation in the second turn of protein L. Journal of Molecular Biology 315, 471–477 (2002)

    Article  Google Scholar 

  5. Pierce, N., Winfree, E.: Protein design is NP-hard. Protein Engineering 15, 779–782 (2002)

    Article  Google Scholar 

  6. Desmet, J., Maeyer, M.D., Hazes, B., Lasters, I.: The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356, 539–541 (1992)

    Article  Google Scholar 

  7. Lasters, I., Desmet, J.: The fuzzy-ended elimination theorem: Correctly implementing the side chain placement algorithm based on the dead-end elimination theorem. Protein Engineering 6, 717–722 (1993)

    Article  Google Scholar 

  8. Goldstein, R.F.: Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophysical Journal 66, 1335–1340 (1994)

    Google Scholar 

  9. Gordon, D.B., Mayo, S.L.: Radical performance enhancements for combinatorial optimization algorithms based on the dead-end elimination theorem. Journal of Computational Chemistry 19, 1505–1514 (1998)

    Article  Google Scholar 

  10. Looger, L.L., Hellinga, H.W.: Generalized dead-end elimination algorithms make large-scale protein side-chain structure prediction tractable: Implications for protein design and structural genomics. Journal of Molecular Biology 307(1), 429–445 (2001)

    Article  Google Scholar 

  11. Gordon, D., Mayo, S.: Branch-and-terminate: A combinatorial optimization algorithm for protein design. Structure Fold Des 7, 1089–1098 (1999)

    Article  Google Scholar 

  12. Canutescu, A.A., Shelenkov, A.A., Dunbrack Jr., R.: A graph-theory algorithm for rapid protein side-chain prediction. Protein Science 12, 2001–2014 (2003)

    Article  Google Scholar 

  13. Leaver-Fay, A., Liu, Y., Snoeyink, J.: Faster placement of hydrogen atoms in protein structures by dynamic programming. In: 6th Workshop on Algorithm Engineering and Experiments (ALENEX 2004) (2004)

    Google Scholar 

  14. Leaver-Fay, A., Kuhlman, B., Snoeyink, J.: An adaptive dynamic programming algorithm for the side chain placement problem. In: Pacific Symposium on Biocomputing, The Big Island, HI, pp. 17–28. World Scientific, Singapore (2005)

    Google Scholar 

  15. Koehl, P., Delarue, M.: Application of a self-consistent mean field theory to predict protein side-chains conformation and estimate their conformational entropy. J. Mol. Biol. 239(2), 249–275 (1994)

    Article  Google Scholar 

  16. Desjarlais, J., Handle, T.: De novo design of hydrophobic cores of proteins. Protein Science 4, 2006–2018 (1995)

    Article  Google Scholar 

  17. Holm, L., Sander, C.: Fast and simple Monte Carlo algorithm for side chain optimization in proteins: Application to model building by homology. Proteins 14(2), 213–223 (1992)

    Article  Google Scholar 

  18. Hellinga, H., Richards, F.: Optimal sequence selection in proteins of known structure by simulated evolution. Proceedings of the National Academy of Sciences, USA 91, 5803–5807 (1994)

    Article  Google Scholar 

  19. Kuhlman, B., Baker, D.: Native protein sequences are close to optimal for their structures. Proceedings of the National Academy of Sciences, USA 97, 10383–10388 (2000)

    Article  Google Scholar 

  20. Desmet, J., Spriet, J., Lasters, I.: Fast and accurate side-chain topology and energy refinement (FASTER) as a new method for protein structure optimization. Proteins 48, 31–43 (2002)

    Article  Google Scholar 

  21. Allen, B.D., Mayo, S.L.: Dramatic performance enhancements for the faster optimization algorithm. Journal of Computational Chemistry 27, 1071–1075 (2006)

    Article  Google Scholar 

  22. Xu, J.: A tree-decompositon based approach to protein structure prediction. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 423–439. Springer, Heidelberg (2005)

    Google Scholar 

  23. Simons, K.T., Bonneau, R., Ruczinski, I., Baker, D.: Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins: Structure Function and Genetics 37, 171–176 (1999)

    Article  Google Scholar 

  24. Bradley, P., Chivian, D., Meiler, J., Misura, K., Rohl, C., Schief, W., Wedemeyer, W., Schueler-Furman, O., Murphy, P., Strauss, J.S.C., Baker, D.: Rosetta predictions in CASP5: Successes, failures, and prospects for complete automation. Proteins: Structure Function and Genetics 53, 457–468 (2003)

    Article  Google Scholar 

  25. Kuhlman, B., Dantas, G., Ireton, G., Varani, G., Stoddard, B., Baker, D.: Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003)

    Article  Google Scholar 

  26. Dantas, G., Kuhlman, B., Callender, D., Wong, M., Baker, D.: A large scale test of computational protein design: Folding and stability of nine completely redesigned globular proteins. Journal of Molecular Biology 332, 449–460 (2003)

    Article  Google Scholar 

  27. Ashworth, J., Havranek, J., Duarte, C., Sussman, D., Monnat, R.J., Monnat, R.J., BL, B.S., Baker, D.: Computational redesign of endonuclease dna binding and cleavage specificity. Nature 441, 656–659 (2006)

    Article  Google Scholar 

  28. Sood, V., Baker, D.: Recapitulation and design of protein binding peptide structures and sequences. Journal of Molecular Biology 357, 917–927 (2006)

    Article  Google Scholar 

  29. Rohl, C., Strauss, C., Misura, K., Baker, D.: Protein structure prediction using rosetta. Methods in Enzymology 383, 66–93 (2004)

    Google Scholar 

  30. Lazaridis, T., Karplus, M.: Effective energy function for proteins in solution. Proteins: Structure Function and Genetics 35, 133–152 (1999)

    Article  Google Scholar 

  31. Kortemme, T., Morozov, A.V., Baker, D.: An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. Journal of Molecular Biology 326, 1239–1259 (2003)

    Article  Google Scholar 

  32. Simons, K., Ruczinski, I., Kooperberg, C., Fox, B., Bystroff, C., Bystroff, C., D., D.B.: Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins: Structure Function and Genetics 34, 82–95 (1999)

    Article  Google Scholar 

  33. Leaver-Fay, A., Kuhlman, B., Snoeyink, J.: Rotamer-pair energy calculations using a trie data structure. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 500–511. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Raj Sunderraman Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leaver-Fay, A., Snoeyink, J., Kuhlman, B. (2008). On-the-Fly Rotamer Pair Energy Evaluation in Protein Design. In: Măndoiu, I., Sunderraman, R., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2008. Lecture Notes in Computer Science(), vol 4983. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79450-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79450-9_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79449-3

  • Online ISBN: 978-3-540-79450-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics