Skip to main content

Invited Keynote Talk: Integrative Viral Molecular Epidemiology: Hepatitis C Virus Modeling

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4983))

Included in the following conference series:

  • 967 Accesses

Abstract

Traditional molecular epidemiology of viral infections is based on identifying genetic markers to assist in epidemiological investigation. The limitations of early molecular technologies led to preponderance of analytical methodology focused on the viral agent itself. Computational analysis was almost exclusively used for phylogenetic inference. Embracing the approaches and achievements of the traditional molecular epidemiology, integrative molecular epidemiology of viral infections expands into a comprehensive analysis of all factors involved into defining outcomes of exposure of a person(s) to viral infections. The major emphasis of this scientific discipline is on the development of predictive models that can be used in different clinical and public health settings. The current paper briefly reviews a few examples that illustrate a new trend in integrative molecular epidemiology striving to quantitatively define viral properties and parameters using primary structure of viral genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schulte, P.A., Perera, F.A.: Molecular Epidemiology: Principles and Practice. Academic Press, London (1993)

    Google Scholar 

  2. Weck, K.: Molecular methods of hepatitis C genotyping. Expert. Rev. Mol. Diagn. 5, 507–520 (2005)

    Article  Google Scholar 

  3. Inudoh, M., Nyunoya, H., Tanaka, T., Hijikata, M., Kato, N., Shimotohno, K.: Antigenicity of hepatitis C virus envelope proteins expressed in Chinese hamster ovary cells. Vaccine 14, 1590–1596 (1996)

    Article  Google Scholar 

  4. Khudyakov, Y.E., Dou, X.-G., Chang, J., Fields, H.A.: Impact of Sequence Heterogeneity on Antigenic Properties of the Hepatitis C Virus (HCV) Proteins. Margolis, Alter, Conlon, Dienstag, Liang (eds.), pp. 381–385. International Medical Pressm, London, UK (2002)

    Google Scholar 

  5. Engelman, D.M., Steitz, T.A., Goldman, A.: Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu. Rev. Biophys. Biophys. Chem. 15, 321–353 (1986)

    Article  Google Scholar 

  6. Schneider, G., Wrede, P.: Artificial neural networks for computer-based molecular design. Prog. Biophys. Mol. Biol. 70, 175–222 (1998)

    Article  Google Scholar 

  7. Creighton, T.E.: Proteins: Structures and Molecular Properties. W.H. Freeman and Company, New York (1993)

    Google Scholar 

  8. White, J.V., Stultz, C.M., Smith, T.F.: Protein classification by stochastic modeling and optimal filtering of amino-acid sequences. Math. Biosci. 119, 35–75 (1994)

    Article  MATH  Google Scholar 

  9. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations of back-propagation erros. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  10. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing, MIT, Cambridge (1986)

    Google Scholar 

  11. Kolaskar, A.S., Kulkarni-Kale, U.: Prediction of three-dimensional structure and mapping of conformational epitopes of envelope glycoprotein of Japanese encephalitis virus. Virology 261, 31–42 (1999)

    Article  Google Scholar 

  12. Kulkarni-Kale, U., Bhosle, S., Kolaskar, A.S.: CEP: A conformational epitope prediction server. Nucleic Acids Res. 33, 168–171 (2005)

    Article  Google Scholar 

  13. Kolaskar, A.S., Tongaonkar, P.C.: A semi-empirical method for prediction of antigenic determinants on protein antigens. Febs Lett. 276, 172–174 (1990)

    Article  Google Scholar 

  14. Wilkins, M.R., Gasteiger, E., Bairoch, A., Sanchez, J.C., Williams, K.L., Appel, R.D., Hochstrasser, D.F.: Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 112, 531–552 (1999)

    Google Scholar 

  15. Bhaskaran, R., Ponnuswamy, P.K.: Dynamics of amino acid residues in globular proteins. Int. J. Pept. Protein Res. 24, 180–191 (1984)

    Google Scholar 

  16. Hopp, T.P., Woods, K.R.: Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. U.S.A. 78, 3824–3828 (1981)

    Article  Google Scholar 

  17. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982)

    Article  Google Scholar 

  18. Eisenberg, D., Schwarz, E., Komaromy, M., Wall, R.: Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 179, 125–142 (1984)

    Article  Google Scholar 

  19. Cooper, G., Herskovits, E.: A bayesian method for the induction of probabilistic networks from data. Machine Learning 9, 309–347 (1992)

    MATH  Google Scholar 

  20. Masso, M., Vaisman, I.I.: Accurate prediction of enzyme mutant activity based on a multibody statistical potential. Bioinformatics 23, 3155–3161 (2007)

    Article  Google Scholar 

  21. Franco, S., Parera, M., Aparicio, E., Clotet, B., Martinez, M.A.: Genetic and catalytic efficiency structure of an HCV protease quasispecies. Hepatology 45, 899–910 (2007)

    Article  Google Scholar 

  22. Rognvaldsson, T., You, L.: Why neural networks should not be used for HIV-1 protease cleavage site prediction. Bioinformatics 20, 1702–1709 (2004)

    Article  Google Scholar 

  23. Lara, J., Gao, F.X., Xia, G., Nainan, O., Khudyakov, Y.: Bayesian networks for evaluation of dependencies between epidemiological, virological and molecular features of the hepatitis C virus infections. J. Clin. Virol. 36 (suppl. 2), pp. S119 (2006)

    Google Scholar 

  24. Sprites, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. MIT Press, Cambridge (2000)

    Google Scholar 

  25. Lauritzen, S.L.: The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis 19, 191–201 (1995)

    Article  MATH  Google Scholar 

  26. Rabinowitz, M., Myers, L., Banjevic, M., Chan, A., Sweetkind-Singer, J., Haberer, J., McCann, K., Wolkowicz, R.: Accurate prediction of HIV-1 drug response from the reverse transcriptase and protease amino acid sequences using sparse models created by convex optimization. Bioinformatics 22, 541–549 (2006)

    Article  Google Scholar 

  27. Lengauer, T., Sander, O., Sierra, S., Thielen, A., Kaiser, R.: Bioinformatics prediction of HIV coreceptor usage. Nat. Biotechnol. 25, 1407–1410 (2007)

    Article  Google Scholar 

  28. Sierra, S., Kaiser, R., Thielen, A., Lengauer, T.: Genotypic coreceptor analysis. Eur. J. Med. Res. 12, 453–462 (2007)

    Google Scholar 

  29. Skrabal, K., Low, A.J., Dong, W., Sing, T., Cheung, P.K., Mammano, F., Harrigan, P.R.: Determining human immunodeficiency virus coreceptor use in a clinical setting: Degree of correlation between two phenotypic assays and a bioinformatic model. J. Clin. Microbiol. 45, 279–284 (2007)

    Article  Google Scholar 

  30. Dykes, C., Demeter, L.M.: Clinical significance of human immunodeficiency virus type 1 replication fitness. Clin. Microbiol. Rev. 20, 550–578 (2007)

    Article  Google Scholar 

  31. Wu, H., Huang, Y., Dykes, C., Liu, D., Ma, J., Perelson, A.S., Demeter, L.M.: Modeling and estimation of replication fitness of human immunodeficiency virus type 1 in vitro experiments by using a growth competition assay. J. Virol. 80, 2380–2389 (2006)

    Article  Google Scholar 

  32. Lin, E., Hwang, Y., Wang, S.C., Gu, Z.J., Chen, E.Y.: An artificial neural network approach to the drug efficacy of interferon treatments. Pharmacogenomics 7, 1017–1024 (2006)

    Article  Google Scholar 

  33. Lin, E., Hwang, Y., Chen, E.Y.: Gene-gene and gene-environment interactions in interferon therapy for chronic hepatitis C. Pharmacogenomics 8, 1327–1335 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Raj Sunderraman Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lara, J., Dimitrova, Z., Khudyakov, Y. (2008). Invited Keynote Talk: Integrative Viral Molecular Epidemiology: Hepatitis C Virus Modeling. In: Măndoiu, I., Sunderraman, R., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2008. Lecture Notes in Computer Science(), vol 4983. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79450-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79450-9_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79449-3

  • Online ISBN: 978-3-540-79450-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics