Abstract
Traditional molecular epidemiology of viral infections is based on identifying genetic markers to assist in epidemiological investigation. The limitations of early molecular technologies led to preponderance of analytical methodology focused on the viral agent itself. Computational analysis was almost exclusively used for phylogenetic inference. Embracing the approaches and achievements of the traditional molecular epidemiology, integrative molecular epidemiology of viral infections expands into a comprehensive analysis of all factors involved into defining outcomes of exposure of a person(s) to viral infections. The major emphasis of this scientific discipline is on the development of predictive models that can be used in different clinical and public health settings. The current paper briefly reviews a few examples that illustrate a new trend in integrative molecular epidemiology striving to quantitatively define viral properties and parameters using primary structure of viral genomes.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schulte, P.A., Perera, F.A.: Molecular Epidemiology: Principles and Practice. Academic Press, London (1993)
Weck, K.: Molecular methods of hepatitis C genotyping. Expert. Rev. Mol. Diagn. 5, 507–520 (2005)
Inudoh, M., Nyunoya, H., Tanaka, T., Hijikata, M., Kato, N., Shimotohno, K.: Antigenicity of hepatitis C virus envelope proteins expressed in Chinese hamster ovary cells. Vaccine 14, 1590–1596 (1996)
Khudyakov, Y.E., Dou, X.-G., Chang, J., Fields, H.A.: Impact of Sequence Heterogeneity on Antigenic Properties of the Hepatitis C Virus (HCV) Proteins. Margolis, Alter, Conlon, Dienstag, Liang (eds.), pp. 381–385. International Medical Pressm, London, UK (2002)
Engelman, D.M., Steitz, T.A., Goldman, A.: Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu. Rev. Biophys. Biophys. Chem. 15, 321–353 (1986)
Schneider, G., Wrede, P.: Artificial neural networks for computer-based molecular design. Prog. Biophys. Mol. Biol. 70, 175–222 (1998)
Creighton, T.E.: Proteins: Structures and Molecular Properties. W.H. Freeman and Company, New York (1993)
White, J.V., Stultz, C.M., Smith, T.F.: Protein classification by stochastic modeling and optimal filtering of amino-acid sequences. Math. Biosci. 119, 35–75 (1994)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations of back-propagation erros. Nature 323, 533–536 (1986)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing, MIT, Cambridge (1986)
Kolaskar, A.S., Kulkarni-Kale, U.: Prediction of three-dimensional structure and mapping of conformational epitopes of envelope glycoprotein of Japanese encephalitis virus. Virology 261, 31–42 (1999)
Kulkarni-Kale, U., Bhosle, S., Kolaskar, A.S.: CEP: A conformational epitope prediction server. Nucleic Acids Res. 33, 168–171 (2005)
Kolaskar, A.S., Tongaonkar, P.C.: A semi-empirical method for prediction of antigenic determinants on protein antigens. Febs Lett. 276, 172–174 (1990)
Wilkins, M.R., Gasteiger, E., Bairoch, A., Sanchez, J.C., Williams, K.L., Appel, R.D., Hochstrasser, D.F.: Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 112, 531–552 (1999)
Bhaskaran, R., Ponnuswamy, P.K.: Dynamics of amino acid residues in globular proteins. Int. J. Pept. Protein Res. 24, 180–191 (1984)
Hopp, T.P., Woods, K.R.: Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. U.S.A. 78, 3824–3828 (1981)
Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982)
Eisenberg, D., Schwarz, E., Komaromy, M., Wall, R.: Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 179, 125–142 (1984)
Cooper, G., Herskovits, E.: A bayesian method for the induction of probabilistic networks from data. Machine Learning 9, 309–347 (1992)
Masso, M., Vaisman, I.I.: Accurate prediction of enzyme mutant activity based on a multibody statistical potential. Bioinformatics 23, 3155–3161 (2007)
Franco, S., Parera, M., Aparicio, E., Clotet, B., Martinez, M.A.: Genetic and catalytic efficiency structure of an HCV protease quasispecies. Hepatology 45, 899–910 (2007)
Rognvaldsson, T., You, L.: Why neural networks should not be used for HIV-1 protease cleavage site prediction. Bioinformatics 20, 1702–1709 (2004)
Lara, J., Gao, F.X., Xia, G., Nainan, O., Khudyakov, Y.: Bayesian networks for evaluation of dependencies between epidemiological, virological and molecular features of the hepatitis C virus infections. J. Clin. Virol. 36 (suppl. 2), pp. S119 (2006)
Sprites, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. MIT Press, Cambridge (2000)
Lauritzen, S.L.: The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis 19, 191–201 (1995)
Rabinowitz, M., Myers, L., Banjevic, M., Chan, A., Sweetkind-Singer, J., Haberer, J., McCann, K., Wolkowicz, R.: Accurate prediction of HIV-1 drug response from the reverse transcriptase and protease amino acid sequences using sparse models created by convex optimization. Bioinformatics 22, 541–549 (2006)
Lengauer, T., Sander, O., Sierra, S., Thielen, A., Kaiser, R.: Bioinformatics prediction of HIV coreceptor usage. Nat. Biotechnol. 25, 1407–1410 (2007)
Sierra, S., Kaiser, R., Thielen, A., Lengauer, T.: Genotypic coreceptor analysis. Eur. J. Med. Res. 12, 453–462 (2007)
Skrabal, K., Low, A.J., Dong, W., Sing, T., Cheung, P.K., Mammano, F., Harrigan, P.R.: Determining human immunodeficiency virus coreceptor use in a clinical setting: Degree of correlation between two phenotypic assays and a bioinformatic model. J. Clin. Microbiol. 45, 279–284 (2007)
Dykes, C., Demeter, L.M.: Clinical significance of human immunodeficiency virus type 1 replication fitness. Clin. Microbiol. Rev. 20, 550–578 (2007)
Wu, H., Huang, Y., Dykes, C., Liu, D., Ma, J., Perelson, A.S., Demeter, L.M.: Modeling and estimation of replication fitness of human immunodeficiency virus type 1 in vitro experiments by using a growth competition assay. J. Virol. 80, 2380–2389 (2006)
Lin, E., Hwang, Y., Wang, S.C., Gu, Z.J., Chen, E.Y.: An artificial neural network approach to the drug efficacy of interferon treatments. Pharmacogenomics 7, 1017–1024 (2006)
Lin, E., Hwang, Y., Chen, E.Y.: Gene-gene and gene-environment interactions in interferon therapy for chronic hepatitis C. Pharmacogenomics 8, 1327–1335 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lara, J., Dimitrova, Z., Khudyakov, Y. (2008). Invited Keynote Talk: Integrative Viral Molecular Epidemiology: Hepatitis C Virus Modeling. In: Măndoiu, I., Sunderraman, R., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2008. Lecture Notes in Computer Science(), vol 4983. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79450-9_33
Download citation
DOI: https://doi.org/10.1007/978-3-540-79450-9_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79449-3
Online ISBN: 978-3-540-79450-9
eBook Packages: Computer ScienceComputer Science (R0)