Abstract
The general binary quadratic Diophantine equation
was first solved by Lagrange over 200 years ago. Since that time little improvement has been made to Lagrange’s technique. In this paper we show how to reduce this problem to that of determining whether or not an ideal of a certain quadratic order is principal and if so exhibiting a generator of that ideal. In the difficult case of the discriminant \(\ensuremath{\Delta}\) of this order being positive, we develop a Las Vegas algorithm for solving the principal ideal problem that executes in expected time bounded by \(O(\ensuremath{\Delta}^{1/6 + \epsilon})\), whereas the complexity of Lagrange’s (unconditional) technique for solving this problem is \(O(\ensuremath{\Delta}^{1/2 + \epsilon})\).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Booker, A.: Quadratic class numbers and character sums. Math. Comp. 75, 1481–1492 (2006)
Buchmann, J., Thiel, C., Williams, H.C.: Short representation of quadratic integers. In: Mathematics and its Applications, vol. 325, pp. 159–185. Kluwer Academic Publishers, Dordrecht (1995)
Buchmann, J., Vollmer, U.: Binary Quadratic Forms: An Algorithmic Approach. Algorithms and Computation in Mathematics, vol. 20. Springer, Berlin (2007)
Cojocaru, A.C., Murty, M.R.: An Introduction to Sieve Methods and their Application. Cambridge University Press, Cambridge (2005)
Cohen, H., Lenstra Jr., H.W.: Heuristics on class groups of number fields. In: Number Theory. Lecture Notes in Math., vol. 1068, pp. 33–62. Springer, New York (1983)
Dickson, L.E.: History of the Theory of Numbers, Carnegie Institution of Washington, Publication No. 256 (1919), vol. 2. Dover Publications, New York (2005)
de Haan, R.: A fast, rigourous technique for verifying the regulator of a real quadratic field. Master’s thesis, University of Amsterdam (2004)
de Haan, R., Jacobson Jr., M.J., Williams, H.C.: A fast, rigorous technique for computing the regulator of a real quadratic field. Math. Comp. 76, 2139–2160 (2007)
Jacobson Jr., M.J.: Subexponential Class Group Computation in Quadratic Orders. PhD thesis, Technische Universität Darmstadt, Darmstadt, Germany (1999)
Jacobson Jr., M.J.: Computing discrete logarithms in quadratic orders. Journal of Cryptology 13, 473–492 (2000)
Jacobson Jr., M.J., Scheidler, R., Williams, H.C.: The efficiency and security of a real quadratic field based key exchange protocol, Walter de Gruyter, Berlin, pp. 89–112 (2001)
Jacobson Jr., M.J., Sawilla, R.E., Williams, H.C.: Efficient ideal reduction in quadratic fields. International Journal of Mathematics and Computer Science 1, 83–116 (2006)
Jacobson Jr., M.J., Scheidler, R., Williams, H.C.: An improved real quadratic field based key-exchange procedure. J. Cryptology 19, 211–239 (2006)
Jacobson Jr., M.J., van der Poorten, A.J.: Computational aspects of NUCOMP. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 120–133. Springer, Heidelberg (2002)
Jacobson Jr., M.J., Williams, H.C.: Modular arithmetic on elements of small norm in quadratic fields. Designs, Codes and Cryptography 27, 93–110 (2002)
Kornhauser, D.M.: On the smallest solution to the general binary quadratic Diophantine equation. Acta Arith. 55, 83–94 (1990)
Lagrange, J.L.: Sur la solution des problèmes indéterminés du second degré. In: Oeuvres, Gauthier-Villars, Paris, vol. II, pp. 377–535 (1868)
Lenstra Jr., H.W.: On the calculation of regulators and class numbers of quadratic fields. London Math. Soc. Lecture Notes Series 56, 123–150 (1982)
Maurer, M.H.: Regulator Approximation and Fundamental Unit Computation for Real-Quadratic Orders. PhD thesis, Technische Universität Darmstadt, Darmstadt, Germany (2000)
Nagell, T.: Introduction to Number Theory, Chelsea, NY (1964)
Nitaj, A.: L’algorithme de Cornacchia. Expositiones Math. 13, 358–365 (1995)
van der Poorten, A.J.: A note on NUCOMP. Math. Comp. 72, 1935–1946 (2003)
Shanks, D.: The infrastructure of real quadratic fields and its applications. In: Proc. 1972 Number Theory Conf., Boulder, Colorado, pp. 217–224 (1972)
Shanks, D.: On Gauss and composition I, II. NATO ASI, Series C, vol. 265, pp. 163–204. Kluwer, Dordrecht (1989)
Srinivasan, A.: Computations of class numbers of real quadratic fields. Math. Comp. 67, 1285–1308 (1998)
Silvester, A.K.: Fast and unconditional principal ideal testing. Master’s thesis, University of Calgary (2006)., http://math.ucalgary.ca/~aksilves/papers/msc-thesis.pdf
Stolt, B.: On the Diophantine equation u 2 − D v 2 = ±4N, Parts I, II, III. Ark. Mat. 2, 1–23, 251–268 (1952); 3, 117–132 (1955)
Williams, H.C., Wunderlich, M.C.: On the parallel generation of the residues for the continued fraction factoring algorithm. Math. Comp. 48, 405–423 (1987)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sawilla, R.E., Silvester, A.K., Williams, H.C. (2008). A New Look at an Old Equation. In: van der Poorten, A.J., Stein, A. (eds) Algorithmic Number Theory. ANTS 2008. Lecture Notes in Computer Science, vol 5011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79456-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-79456-1_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79455-4
Online ISBN: 978-3-540-79456-1
eBook Packages: Computer ScienceComputer Science (R0)