Skip to main content

An Introduction to Computational Intelligence Paradigms

  • Chapter
Computational Intelligence Paradigms

Part of the book series: Studies in Computational Intelligence ((SCI,volume 137))

Abstract

This chapter presents an introduction to computational intelligence (CI) paradigms. A number of CI definitions are first presented to provide a general concept of this new, innovative computing field. The main constituents of CI, which include artificial neural networks, fuzzy systems, and evolutionary algorithms, are explained. In addition, different hybrid CI models arisen from synergy of neural, fuzzy, and evolutionary computational paradigms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amorim, D.G., Delgado, M.F., Ameneiro, S.B.: Polytope ARTMAP: Pattern classification without vigilance based on general geometry categories. IEEE Transactions on Neural Networks 18, 1306–1325 (2007)

    Article  Google Scholar 

  • Angeline, P.J., Saunders, G.M., Pollack, J.B.: An evolutionary algorithm that constructs recurrent neural networks. IEEE Transactions on Neural Networks 5, 54–65 (1994)

    Article  Google Scholar 

  • Behera, L., Kumar, S., Patnaik, A.: On adaptive learning rate that guarantees convergence in feedforward networks. IEEE Transactions on Neural Networks 17, 1116–1125 (2006)

    Article  Google Scholar 

  • Bezdek, J.C.: What is a computational intelligence? In: Zurada, J.M., Marks II, R.J., Robinson, C.J. (eds.) Computational Intelligence: Imitating Life, pp. 1–12. IEEE Press, Los Alamitos (1994)

    Google Scholar 

  • Carpenter, G.A., Grossberg, S.: A massively parallel architecture for a self-organising neural pattern recognition machine. Computer Vision, Graphics and Image Processing 37, 54–115 (1987a)

    Article  Google Scholar 

  • Carpenter, G.A., Grossberg, S.: ART 2: Stable self-organisation of pattern recognition codes for analogue input patterns. Applied Optics 26, 4919–4930 (1987b)

    Article  Google Scholar 

  • Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., Rosen, D.B.: Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analogue multidimensional maps. IEEE Transactions on Neural Networks 3, 698–712 (1992)

    Article  Google Scholar 

  • Casillas, J., Carse, B., Bull, L.: Fuzzy-XCS: A michigan genetic fuzzy system. IEEE Transactions on Fuzzy Systems 15, 536–550 (2007b)

    Article  Google Scholar 

  • Casillas, J., Cordón, O., del Jesus, M.J., Herrera, F.: Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction. IEEE Transactions on Fuzzy Systems 13, 13–29 (2007a)

    Article  Google Scholar 

  • Fogel, D.: Review of Computational Intelligence: Imitating Life. IEEE Trans. on Neural Networks 6, 1562–1565 (1995)

    Google Scholar 

  • Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution. John Wiley, New York (1966)

    MATH  Google Scholar 

  • García-Pedrajas, N., Hervás-Martinez, C., Muñoz-Perez, J.: Symbiont: A cooperative evolutionary model for evolving artificial neural networks for classification. In: Bouchon-Meunier, B., Gutierrez-Rios, J., Magdalena, L., Yager, R.R. (eds.) Technologies for constructing intelligent systems: tools, vol. 2, pp. 341–354. Springer, Berlin (2002a)

    Google Scholar 

  • García-Pedrajas, N., Hervás-Martinez, C., Muñoz-Perez, J.: Multi-objective cooperative coevolution of artificial neural networks (multi-objective cooperative networks). Neural Networks 15, 1259–1278 (2002b)

    Article  Google Scholar 

  • García-Pedrajas, N., Hervás-Martinez, C., Muñoz-Perez, J.: Covnet: A cooperative coevolutionary model for evolving artificial neural networks. IEEE Transactions on Neural Networks 14, 820–834 (2003)

    Article  Google Scholar 

  • Gonçalves, L.B., Vellasco, M.M.B.R., Pacheco, M.A.C., de Souza, F.J.: Inverted hierarchical neuro-fuzzy bsp system: a novel neuro-fuzzy model for pattern classification and rule extraction in databases. IEEE Transactions on Systems, Man, and Cybernectics–C 36, 236–248 (2006)

    Article  Google Scholar 

  • Gorzalczany, M.B.: Computational Intelligence Systems and Applications: Neuro-Fuzzy and Fuzzy Neural Synergisms. Physica-Verlag, Heidelberg (2002)

    MATH  Google Scholar 

  • Goulermas, J.Y., Liatsis, P., Zeng, X.-J., Cook, P.: Density-driven generalized regression neural networks (DD-GRNN) for function approximation. IEEE Transactions on Neural Networks 18, 1683–1696 (2007)

    Article  Google Scholar 

  • Gupta, M.M., Qi, J.: On fuzzy neuron models. In: Zadeh, L.A., Kacprzyk, J. (eds.) Fuzzy Logic for the Management of Uncertainty, pp. 479–491. J. Wiley & Sons, New York (1992)

    Google Scholar 

  • Hayashi, Y., Buckley, J.J., Czogala, E.: Fuzzy neural network with fuzzy signals and weights. International Journal of Intelligent Systems 8, 527–537 (1993)

    Article  MATH  Google Scholar 

  • Hebb, D.O.: The Organisation of Behaviour. John Wiley and Sons, New York (1949)

    Google Scholar 

  • Holland, J.H.: Outline for a logical theory of adaptive systems. J. ACM 3, 297–314 (1962)

    Article  Google Scholar 

  • Holland, J.H.: Escaping brittleness: The possibility of general-purpose learning algorithms applied to parallel rule-based systems. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Mach. Learn., pp. 593–624. Morgan Kaufmann, Los Altos (1986)

    Google Scholar 

  • Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Science 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  • Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Science 81, 3088–3092 (1984)

    Article  Google Scholar 

  • Jang, J.S.R.: ANFIS: Adaptive-network-based-fuzzy-inference-system. IEEE Transactions on Systems, Man, and Cybernectics 23, 665–685 (1993)

    Article  Google Scholar 

  • John, R., Coupland, S.: Type-2 fuzzy logic: A historical view. IEEE Computational Intelligence Magazine 2, 57–62 (2007)

    Article  Google Scholar 

  • Juang, C.-F.: A TSK-Type Recurrent Fuzzy Network for Dynamic Systems Processing by Neural Network and Genetic Algorithms. IEEE Transactions on Fuzzy Systems 10, 155–170 (2002)

    Article  Google Scholar 

  • Kasabov, N.K.: Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning. IEEE Transactions on Systems, Man, and Cybernectics–B 31, 902–918 (2001)

    Article  Google Scholar 

  • Kasabov, N.K., Song, Q.: DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Transactions on Fuzzy Systems 10, 144–154 (2002)

    Article  Google Scholar 

  • Kohonen, T.: Self-organising formation of topologically correct feature maps. Biological Cybernetics 43, 59–69 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Kohonen, T.: Self-Organization and Associative Memory. Springer, Heidelberg (1988)

    MATH  Google Scholar 

  • Koza, J.R.: Genetic Programming. The MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  • Lian, J., Lee, Y., Sudhoff, S.D., Å»ak, S.H.: Self-organizing radial basis function network for real-time approximation of continuous-time dynamical systems. IEEE Transactions on Neural Networks 19, 460–474 (2008)

    Article  Google Scholar 

  • Lin, C.-J., Hsu, Y.-C.: Reinforcement hybrid evolutionary learning for recurrent wavelet-based neurofuzzy systems. IEEE Transactions on Fuzzy Systems 15, 729–745 (2007)

    Article  Google Scholar 

  • Liu, P., Li, H.: Efficient learning algorithms for three-layer regular feedforward fuzzy neural networks. IEEE Transactions on Neural Networks 15, 545–558 (2004)

    Article  MATH  Google Scholar 

  • Manrique, D., Rios, J., Rodriguez-Paton, A.: Evolutionary system for automatically constructing and adapting radial basis function networks. Neurocomputing 69, 2268–2283 (2006)

    Article  Google Scholar 

  • Marks, R.: Intelligence: computational versus artificial. IEEE Transactions on Neural Networks 4, 737–739 (1993)

    Google Scholar 

  • McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  • Mendel, J.M.: Type-2 fuzzy sets and systems: an overview. IEEE Computational Intelligence Magazine 2, 20–29 (2007)

    Google Scholar 

  • Mitra, S., De, R.K., Pal, S.K.: Knowledge-based fuzzy mlp for classification and rule generation. IEEE Transactions on Neural Networks 8, 1338–1350 (1997)

    Article  Google Scholar 

  • Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units. Neural Computation 1, 281–294 (1989)

    Article  Google Scholar 

  • Mou, S., Gao, H., Lam, J., Qiang, W.: A new criterion of delay-dependent asymptotic stability for hopfield neural networks with time delay. IEEE Transactions on Neural Networks 19, 532–535 (2008)

    Article  Google Scholar 

  • Nauck, D., Kruse, R.: A neuron-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets and Systems 89, 277–288 (1997)

    Article  MathSciNet  Google Scholar 

  • Nauck, D., Kruse, R.: Neuro-fuzzy systems for function approximation. Fuzzy Sets and Systems 101, 261–271 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Pal, T., Pal, N.R.: SOGARG: A self-organized genetic algorithm-based rule generation scheme for fuzzy controllers. IEEE Transactions on Evolutionary Computations 7, 397–415 (2003)

    Article  Google Scholar 

  • Palmes, P.P., Hayasaka, T., Usui, S.: Mutation-based genetic neural network. IEEE Transactions on Neural Networks 16, 587–600 (2005)

    Article  Google Scholar 

  • Paul, S., Kumar, S.: Subsethood-product fuzzy neural inference system (SuPFuNIS). IEEE Transactions on Neural Networks 13, 578–599 (2002)

    Article  Google Scholar 

  • Pedrycz, W.: Computational intelligence: an introduction. In: Szczepaniak, P.S. (ed.) Computational Intelligence and Applications, pp. 3–17. Physical-Verlag, Heidelberg (1999)

    Google Scholar 

  • Peña-Reyes, C.A., Sipper, M.: Fuzzy CoCo: A Cooperative-Coevolutionary Approach to Fuzzy Modeling. IEEE Transactions on Fuzzy Systems 9, 727–737 (2001)

    Article  Google Scholar 

  • Pitts, W., McCulloch, W.S.: How we know universals: the perception of auditory and visual forms. Bulletin of Mathematical Biophysics 9, 127–147 (1947)

    Article  Google Scholar 

  • Rechenberg, I.: Evolutionary strategy. In: Zurada, J.M., Marks II, R., Robinson, C. (eds.) Computational Intelligence: Imitating Life, pp. 147–159. IEEE Press, Los Alamitos (1994)

    Google Scholar 

  • Rosenblatt, F.: The perceptron, a probabilistic model for information storage and organisation in the brain. Psychological Review 65, 386–408 (1958)

    Article  MathSciNet  Google Scholar 

  • Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representation by error propagation. In: Rumelhart, D.E., McLelland, J.L. (eds.) Parallel Distributed Processing, vol. I, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  • Schwefel, H.-P.: Numerical Optimization of Computer Models. John Wiley, Chichester (1981)

    MATH  Google Scholar 

  • Song, Q., Kasabov, N.K.: NFI: A neuro-fuzzy inference method for transductive reasoning. IEEE Transactions on Fuzzy Systems 13, 799–808 (2005)

    Article  Google Scholar 

  • Song, T., Jamshidi, M.M., Lee, R.R., Huang, M.: A modified probabilistic neural network for partial volume segmentation in brain mr image. IEEE Transactions on Neural Networks 18, 1424–1432 (2007)

    Article  Google Scholar 

  • Su, S.-F., Yang, F.-Y.P.: On the dynamical modeling with neural fuzzy networks. IEEE Transactions on Neural Networks 13, 1548–1553 (2002)

    Article  Google Scholar 

  • Velayutham, S., Kumar, S.: Asymmetric subsethood-product fuzzy neural inference system (ASuPFuNIS). IEEE Transactions on Neural Networks 16, 160–174 (2005)

    Article  Google Scholar 

  • Wang, C.-H., Cheng, C.-S., Lee, T.-T.: Dynamical Optimal Training for Interval Type-2 Fuzzy Neural Network (T2FNN). IEEE Transactions on Systems, Man, and Cybernectics–B 34, 1462–1477 (2004)

    Article  Google Scholar 

  • Widrow, B., Hoff, M.E.: Adaptive switching circuits. In: IRE WESCON Convention Record, pp. 96–104 (1960)

    Google Scholar 

  • Yamakawa, T., Uchino, E., Miki, T., Kusanagi, H.: A neo fuzzy neuron and its application to system identification and prediction of the system behaviour. In: Proc. of 2-nd International Conference on Fuzzy Logic and Neural Networks, pp. 477–483 (1992)

    Google Scholar 

  • Yao, X.: Evolving artificial neural networks. Proceedings of IEEE 87, 1423–1447 (1999)

    Article  Google Scholar 

  • Yao, X., Liu, Y.: A new evolutionary system for evolving artificial neural networks. IEEE Transactions on Neural Networks 8, 694–713 (1997)

    Article  Google Scholar 

  • Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on System, Man and Cybernectics SMC-3, 28–44 (1973)

    MathSciNet  MATH  Google Scholar 

  • Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning– 1. Information Sciences 8, 199–249 (1975)

    Article  MathSciNet  Google Scholar 

  • Zhang, Y.-Q., Fraser, M.D., Gagliano, R.A., Kandel, A.: Granular neural networks for numerical-linguistic data fusion and knowledge discovery. IEEE Transactions on Neural Networks 11, 658–667 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lakhmi C. Jain Mika Sato-Ilic Maria Virvou George A. Tsihrintzis Valentina Emilia Balas Canicious Abeynayake

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jain, L.C., Tan, S.C., Lim, C.P. (2008). An Introduction to Computational Intelligence Paradigms. In: Jain, L.C., Sato-Ilic, M., Virvou, M., Tsihrintzis, G.A., Balas, V.E., Abeynayake, C. (eds) Computational Intelligence Paradigms. Studies in Computational Intelligence, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79474-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79474-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79473-8

  • Online ISBN: 978-3-540-79474-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics