Abstract
A beam-hardening effect is a common problem affecting the quantitative ability of X-ray computed tomography. We develop a statistical reconstruction for a poly-energetic model, which can effectively reduce beam-hardening effects. A phantom test is used to evaluate our approach in comparison with traditional correction methods. Unlike previous methods, our algorithm utilizes multiple energy-corresponding blank scans to estimate attenuation map for a particular energy spectrum. Therefore, our algorithm has an energy-selective reconstruction. In addition to the benefits of other iterative reconstructions, our algorithm has the advantage in no requirement for prior knowledge about object material, energy spectrum of source and energy sensitivity of the detector. The results showed an improvement in the coefficient of variation, uniformity and signal-to-noise ratio demonstrating better beam hardening correction in our approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Li, W., Gill, R., Corbly, A., Jones, B., Belagaje, R., Zhang, Y., Tang, S., Chen, Y., Zhai, Y., Wang, G.M., Wa, A., Hui, K., Westmore, M., Hanson, J., Chen, Y.F., Simons, M., Singh, J.P.: High-Resolution Quantitative Computed Tomography Demonstrating Selective Enhancement of Medium-Size Collaterals by Placental Growth Factor-1 in the Mouse Ischemic Hindlimb. Circulation 113, 2445–2453 (2006)
Alvarez, R.E., Macovski, A.: Energy-Selective Reconstructions in X-ray Computerized Tomography. Phys. Med. Biol. 21(5), 733–744 (1976)
Van de Casteele, E., Van Dyck, D., Sijbers, J., Raman, E.: An Energy-Based Beam Hardening Model in Tomography. Phys. Med. Biol. 47(23), 4181–4190 (2002)
Brooks, R.A., Di Chiro, G.: Beam Hardening in X-ray Reconstructive Tomography. Phys. Med. Biol. 21(3), 390–398 (1976)
Macovski, A., Alvarez, R.E., Chan, J.L., Stonestrom, J.P., Zatz, L.M.: Energy Dependent Reconstruction in X-Ray Computerized Tomography. Comput. Biol. Med. 6(4), 325–336 (1976)
Elbakri, I.A., Fessler, J.A.: Statistical image Reconstruction For Polyenergetic X-ray Computed Tomography. IEEE Trans Med Imaging 21(2), 89–99 (2002)
Idris, A.E., Fessler, J.A.: Segmentation-free Statistical Image Reconstruction for Polyenergetic X-ray computed Tomography with Experimental Validation. Phys. Med. Biol. 48(15), 2453–2477 (2003)
Lange, L., Fessler, J.A.: Globally Convergent Algorithms for Maximum a Posteriori Transmission Tomography. IEEE Trans Med Imaging 4(10), 1430–1438 (1995)
Erdogan, H., Fessler, J.A.: Monotonic Algorithms for Transmission Tomography. IEEE Trans. Med. Imaging 18(9), 801–814 (1999)
Beekman, F.J., Kamphuis, C.: Ordered Subset Reconstruction for X-ray CT. Phys. Med. Biol. 46(7), 1835–1844 (2001)
Erdogan, H., Fessler, J.A.: Ordered Subsets Algorithms for Transmission Tomography. Phys. Med. Biol. 44(11), 2835–2851 (1999)
Kamphuis, C., Beekman, F.J.: Accelerated Iterative Transmission CT Reconstruction Using an Ordered Subsets Convex Algorithm. IEEE Trans Med Imaging 17(6), 1101–1105 (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chueh, HS., Tsai, WK., Chang, CC., Chang, SM., Su, KH., Chen, JC. (2008). An Iterative Reconstruction for Poly-energetic X-ray Computed Tomography. In: Gao, X., Müller, H., Loomes, M.J., Comley, R., Luo, S. (eds) Medical Imaging and Informatics. MIMI 2007. Lecture Notes in Computer Science, vol 4987. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79490-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-79490-5_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79489-9
Online ISBN: 978-3-540-79490-5
eBook Packages: Computer ScienceComputer Science (R0)