Skip to main content

Diagnostic System for Intestinal Motility Disfunctions Using Video Capsule Endoscopy

  • Conference paper
Computer Vision Systems (ICVS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5008))

Included in the following conference series:

  • 2679 Accesses

Abstract

Wireless Video Capsule Endoscopy is a clinical technique consisting of the analysis of images from the intestine which are provided by an ingestible device with a camera attached to it. In this paper we propose an automatic system to diagnose severe intestinal motility disfunctions using the video endoscopy data. The system is based on the application of computer vision techniques within a machine learning framework in order to obtain the characterization of diverse motility events from video sequences. We present experimental results that demonstrate the effectiveness of the proposed system and compare them with the ground-truth provided by the gastroenterologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sonka, M., Fitzpatrick, J.M.: Handbook of Medical Imaging. SPIE Press (2000)

    Google Scholar 

  2. Iddan, G., Meron, G., et al.: Wireless capsule endoscopy. Nature 405, 417 (2000)

    Article  Google Scholar 

  3. Tjoa, M.P., Krishnan, S.M.: Feature extraction for the analysis of colon status from the endoscopic images. Biomedical Engineering OnLine 2, 3–17 (2003)

    Article  Google Scholar 

  4. Karkanis, S.A., Iakovidis, D.K., et al.: Computer aided tumor detection in endoscopic video using color wavelet features. IEEE Transactions on Information Technology in Biomedicine 7, 141–152 (2003)

    Article  Google Scholar 

  5. Magoulas, G., Plagianakos, V., et al.: Neural network-based colonoscopic diagnosis using online learning and differential evolution. Applied Soft Computing 4, 369–379 (2004)

    Article  Google Scholar 

  6. Zheng, M.M., Krishnan, S.M., Tjoa, P.: A fusion-based clinical support for disease diagnosis from endoscopic images. Computers in Biology and Medicine 35(3), 259–274 (2005)

    Article  Google Scholar 

  7. Kodogiannis, V.S., Chowdrey, H.S.: Multi-network classification scheme for computer-aided diagnosis in clinical endoscopy. In: Proceedings of the International Conference on Medical Signal Processing (MEDISP), pp. 262–267 (2004)

    Google Scholar 

  8. Boulougoura, M., Wadge, V., et al.: Intelligent systems for computer-assisted clinical endoscopic image analysis. In: Proceedings of the 2nd IASTED Conference on Biomedical Engineering Innsbruck, pp. 405–408 (2005)

    Google Scholar 

  9. Vapnik, V.N.: An overview of statistical learning theory. IEEE Transactions on Neural Networks, 988–999 (1999)

    Google Scholar 

  10. Tipping, M.: The relevance vector machine. In: Advances in Neural Information Processing Systems, San Mateo, CA, Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  11. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)

    Google Scholar 

  12. CIE: Colorimetry - part 4: Cie 1976 l*a*b* colour spaces. Cie draft standard ds 014-4.2/e:2006 (2006)

    Google Scholar 

  13. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vision 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  14. Russ, J.C.: The Image Processing Handbook. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  15. Vilariño, F., Spyridonos, P., Vitrià, J., de Iorio, F., Azpiroz, F., Radeva, P.: Intestinal motility assessment with video capsule endoscopy: Automatic annotation of intestinal contractions. IEEE Trans. on Medical Imaging (under revision) (2006)

    Google Scholar 

  16. Spyridonos, P., Vilariño, F., Vitrià, J., Radeva, P.: Anisotropic feature extraction from endoluminal images for detection of intestinal contractions. LNCS (in press, 2006)

    Google Scholar 

  17. Given Imaging, L. (2007), http://www.givenimaging.com

  18. Stone, M.: Cross-validatory choice and assessment of statistical predictions (with discussion). Journal of the Royal Statistical Society B 36, 111–147 (1974)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Antonios Gasteratos Markus Vincze John K. Tsotsos

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seguí, S. et al. (2008). Diagnostic System for Intestinal Motility Disfunctions Using Video Capsule Endoscopy. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds) Computer Vision Systems. ICVS 2008. Lecture Notes in Computer Science, vol 5008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79547-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79547-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79546-9

  • Online ISBN: 978-3-540-79547-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics