Skip to main content

Automatic Object Detection on Aerial Images Using Local Descriptors and Image Synthesis

  • Conference paper
Computer Vision Systems (ICVS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5008))

Included in the following conference series:

  • 2760 Accesses

Abstract

The presented work aims at defining techniques for the detection and localisation of objects, such as aircrafts in clutter backgrounds, on aerial or satellite images. A boosting algorithm is used to select discriminating features and a descriptor robust to background and target texture variations is introduced. Several classical descriptors have been studied and compared to the new descriptor, the HDHR. It is based on the assumption that targets and backgrounds have different textures. Image synthesis is then used to generate large amounts of learning data: the Adaboost has thus access to sufficiently representative data to take into account the variability of real operational scenes. Observed results prove that a vision system can be trained on adapted simulated data and yet be efficient on real images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Daugman, J.G.: Complete discrete 2-D Gabor transform by neural networks for image analysis and compression. IEEE Trans. on Acoustics, Speech and Signal Processing 36(7), 1169–1179 (1988)

    Article  MATH  Google Scholar 

  2. Dorko, G., Schmid, C.: Selection of Scale-Invariant Parts for Object Class Recognition. In: Proc. ICCV, Nice, pp. 634–639 (2003)

    Google Scholar 

  3. Fergus, R., Perona, P., Zisserman, A.: Object Class Recognition by Unsupervised Scale-Invariant Learning. In: Proc. CVPR, Madison, vol. 2, pp. 264–271 (2003)

    Google Scholar 

  4. Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. PAMI 13(9), 891–906 (1991)

    Google Scholar 

  5. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and application to boosting. J. of Comp. And Sys. Sc. 55(1), 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hsieh, J.-W., Chen, J.-M., Chuang, C.-H., Fan, K.-C.: Aircraft type recognition in satellite images. IEEE Proc.-Vis. Image Signal Process 152(3) (June 2005)

    Google Scholar 

  7. Lazebnik, S., Schmid, C., Ponce, J.: Affine invariant local descriptors and neighborhood statistics for texture recognition. In: Proc ICCV, Nice, vol. 2, pp. 914–921 (2003)

    Google Scholar 

  8. Leibe, B., Schiele, B.: Scale-Invariant Object Categorization using a Scale-Adaptive Mean-Shift Search, pp. 145–153. DAGM, Tübingen (2004)

    Google Scholar 

  9. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. ICCV, Corfu. pp. 1150–1157 (1999)

    Google Scholar 

  10. Mostafa, M.G., Hemayed, E.E., Farag, A.A.: Target recognition via 3D object reconstruction from image sequence and contour matching. Pattern Recognition Letters 20, 1381–1387 (1999)

    Article  Google Scholar 

  11. Constantine, P.: Papageorgiou, Michael Oren, and Tomaso Poggio, A general framework for object detection. In: Proc. ICCV, Bombay, pp. 555–562 (1998)

    Google Scholar 

  12. Porikli, F.M.: Integral histogram: A fast way to extract histograms in Cartesian spaces. In: Proc. CVPR, San Diego, pp. 829–836 (2005)

    Google Scholar 

  13. Ruch, O., Dufour, J.: Real-time automatic target recognition and identification of ground vehicles for airborne optronic systems. In: Proceedings of the SPIE, vol. 5909, pp. 11–20 (2005)

    Google Scholar 

  14. Stefan, K., Georg, P., Helmut, G., Horst, B., Joachim, B.: A 3D Teacher for Car Detection in Aerial Images. In: Proceedings of the Eleventh IEEE International Conference on Computer Vision, Workshop on 3D Representation for Recognition (3dRR-2007) (2007)

    Google Scholar 

  15. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. CVPR, Hawaii, pp. 511–518 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Antonios Gasteratos Markus Vincze John K. Tsotsos

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perrotton, X., Sturzel, M., Roux, M. (2008). Automatic Object Detection on Aerial Images Using Local Descriptors and Image Synthesis. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds) Computer Vision Systems. ICVS 2008. Lecture Notes in Computer Science, vol 5008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79547-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79547-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79546-9

  • Online ISBN: 978-3-540-79547-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics