Skip to main content

Ranking Corner Points by the Angular Difference between Dominant Edges

  • Conference paper
Computer Vision Systems (ICVS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5008))

Included in the following conference series:

Abstract

In this paper a variant of the Harris corner point detector is introduced. The new algorithm use a covariance operator to compute the angular difference between dominant edges. Then, a new cornerness strength function is proposed by weighting the log Harris cornerness function by the angular difference between dominant edges. An important advantage of the proposed corner detector algorithm is its ability to reduce false corner responses in image regions where partial derivatives have similar values. In addition, we show qualitatively that ranking corner points with the new cornerness strength function better agrees with the intuitive notion of a corner than the original Harris function. To demonstrate the performance of the new algorithm, the new approach is applied on synthetic and real images. The results show that the proposed algorithm rank better the meaningful detected features and at the same time reduces false positive features detected when compared to the original Harris algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  2. Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 1994), pp. 593–600 (1994)

    Google Scholar 

  3. Moravec, H.P.: Visual mapping by a robot rover. In: International Joint Conference on Artificial Intelligence, vol. 1, pp. 598–600 (1979)

    Google Scholar 

  4. Harris, C., Stephens, M.: A combined corner and edge detector. In: Matthews, M.M. (ed.) Proc. Of the 4th ALVEY vision conference, vol. 27, pp. 147–151 (1988)

    Google Scholar 

  5. Kanade, T., Tomasi, C.: Detection and tracking of point features. CMU Technical Report CMU–CS–91–132 1, 91–132 (1991)

    Google Scholar 

  6. Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. Intercommission Conference on Fast Processing of Photogrammetric Data 1, 281–305 (1996)

    Google Scholar 

  7. Beaudet, P.: Rotationally invariant image operators. In: Proceedings of the 4th International Joint Conference on Pattern Recognition, vol. 1, pp. 579–583 (1978)

    Google Scholar 

  8. Kitchen, L., Rosenfeld, A.: Gray–level corner detection. Pattern Recognition Letters 1, 95–102 (1982)

    Article  Google Scholar 

  9. Torre, V., Poggio, T.A.: On edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 147–163 (1986)

    Article  Google Scholar 

  10. Sojka, E.: A new approach to detecting the corners in digital images. In: Proc. IEEE Int. Conf. on Image Processing, vol. 2, pp. 445–448 (2003)

    Google Scholar 

  11. Smith, S.M., Brady, J.M.: Susan – a new approach to low level image processing. International Journal of Computer Vision 23, 45–78 (1997)

    Article  Google Scholar 

  12. Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30, 79–116 (1998)

    Article  Google Scholar 

  13. Mikolajczyk, K., Schmid, C.: A comparison of affine region detectors. International Journal of Computer Vision, 43–72 (2005)

    Google Scholar 

  14. Kadir, T., Brady, M.: Scale, saliency and image description. International Journal of Computer Vision 45, 83–105 (2001)

    Article  MATH  Google Scholar 

  15. Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Proc. of 7th ECCV, vol. 1, pp. 128–142 (2002)

    Google Scholar 

  16. Tuytelaars, T., Van Gool, L.: Matching widely separated views based on affine invariant regions. International Journal of Computer Vision 59, 61–85 (2004)

    Article  Google Scholar 

  17. Lowe, D.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision, vol. 1, pp. 1150–1157 (1999)

    Google Scholar 

  18. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. Journal Computer Vision 60, 63–86 (2004)

    Article  Google Scholar 

  19. Lemuz-López, R., Arias-Estrada, M.: A domain reduction algorithm for incremental projective reconstruction. In: ISVC (2), pp. 564–575 (2006)

    Google Scholar 

  20. Rosin, P.L.: Augmenting corner descriptors. Graphical Models and Image Processing 58, 286–294 (1996)

    Article  Google Scholar 

  21. Zitova, B., Kautsky, J., Peters, G., Flusser, J.: Robust detection of significant points in multiframe images. Pattern Recognition Letters 20, 2, 199–206 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Antonios Gasteratos Markus Vincze John K. Tsotsos

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lemuz-López, R., Arias Estrada, M. (2008). Ranking Corner Points by the Angular Difference between Dominant Edges. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds) Computer Vision Systems. ICVS 2008. Lecture Notes in Computer Science, vol 5008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79547-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79547-6_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79546-9

  • Online ISBN: 978-3-540-79547-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics