Abstract
In this contribution we describe a vision system for model-based 3D detection and spatio-temporal pose estimation of objects in cluttered scenes. As low-level features, our approach requires 3D depth points along with information about their motion and the direction of the local intensity gradient. We extract these features by spacetime stereo based on local image intensity modelling. After applying a graph-based clustering approach to obtain an initial separation between the background and the object, a 3D model is adapted to the 3D point cloud based on an ICP-like optimisation technique, yielding the translational, rotational, and internal degrees of freedom of the object. We introduce an extended constraint line approach which allows to estimate the temporal derivatives of the translational and rotational pose parameters directly from the spacetime stereo data. Our system is evaluated in the scenario of person-independent “tracking by detection” of the hand-forearm limb moving in a non-uniform manner through a cluttered scene. The temporal derivatives of the current pose parameters are used for initialisation in the subsequent image. Typical accuracies of the estimation of pose differences between subsequent images are 1–3 mm for the translational motion, which is comparable to the pixel resolution, and 1–3 degrees for the rotational motion.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)
Bock, H.H.: Automatische Klassifikation, Vandenhoeck & Ruprecht, Göttingen, Germany (1974)
Duric, Z., Li, F., Sun, Y., Wechsler, H.: Using Normal Flow for Detection and Tracking of Limbs in Color Images. In: Proc. Int. Conf. on Pattern Recognition, Quebec City, Canada, vol. 4, pp. 268–271 (2002)
Franke, U., Rabe, C., Badino, H., Gehrig, S.K.: 6D-Vision: Fusion of Stereo and Motion for Robust Environment Perception. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 216–223. Springer, Heidelberg (2005)
Gonçalves, N., Araújo, H.: Estimation of 3D Motion from Stereo Images – Differential and Discrete Formulations. In: Proc. Int. Conf. on Pattern Recognition, Quebec City, Canada, vol. 1, pp. 335–338 (2002)
Hahn, M., Krüger, L., Wöhler, C., Groß, H.-M.: Tracking of Human Body Parts using the Multiocular Contracting Curve Density Algorithm. In: Proc. Int. Conf. on 3-D Digital Imaging and Modeling, Montréal, Canada (2007)
Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17(1–3), 185–203 (1981)
Horn, B.K.P.: Robot Vision. MIT Press, Cambridge (1986)
Knoop, S., Vacek, S., Dillmann, R.: Modeling Joint Constraints for an Articulated 3D Human Body Model with Artificial Correspondences in ICP. In: Proc. Int. Conf. on Humanoid Robots, Tsukuba, Japan (2005)
Krüger, L., Wöhler, C., Würz-Wessel, A., Stein, F.: In-factory calibration of multiocular camera systems. In: Proc. SPIE Photonics Europe (Optical Metrology in Production Engineering), Strasbourg, pp. 126–137 (2004)
Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104(2), 90–126 (2006)
Rey, W.J.J.: Introduction to Robust and Quasi-Robust Statistical Methods. Springer, Heidelberg (1983)
Rosenhahn, B., Kersting, U., Smith, A., Gurney, J., Brox, T., Klette, R.: A system for marker-less human motion estimation. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 230–237. Springer, Heidelberg (2005)
Schmidt, J., Wöhler, C., Krüger, L., Gövert, T., Hermes, C.: 3D Scene Segmentation and Object Tracking in Multiocular Image Sequences. In: Proc. Int. Conf. on Computer Vision Systems, Bielefeld, Germany (2007)
Schunck, B.G.: Image Flow Segmentation and Estimation by Constraint Line Clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 11(10), 1010–1027 (1989)
Zhang, Z.: Iterative point matching for registration of free-form curves. Technical report no. 1658, Institut National de Recherche en Informatique et en Automatique (INRIA) Sophia Antipolis, France (1992)
Ziegler, J., Nickel, K., Stiefelhagen, R.: Tracking of the Articulated Upper Body on Multi-View Stereo Image Sequences. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 774–781 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Barrois, B., Wöhler, C. (2008). Spatio-temporal 3D Pose Estimation of Objects in Stereo Images. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds) Computer Vision Systems. ICVS 2008. Lecture Notes in Computer Science, vol 5008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79547-6_49
Download citation
DOI: https://doi.org/10.1007/978-3-540-79547-6_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79546-9
Online ISBN: 978-3-540-79547-6
eBook Packages: Computer ScienceComputer Science (R0)