Skip to main content

Enhancing Robustness of a Saliency-Based Attention System for Driver Assistance

  • Conference paper
Computer Vision Systems (ICVS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5008))

Included in the following conference series:

  • 2701 Accesses

Abstract

Biologically motivated attention systems prefilter the visual environment for scene elements that pop out most or match the current system task best. However, the robustness of biological attention systems is difficult to achieve, given e.g., the high variability of scene content, changes in illumination, and scene dynamics. Most computational attention models do not show real time capability or are tested in a controlled indoor environment only. No approach is so far used in the highly dynamic real world scenario car domain. Dealing with such scenarios requires a strong system adaptation capability with respect to changes in the environment. Here, we focus on five conceptual issues crucial for closing the gap between artificial and natural attention systems operating in the real world. We show the feasibility of our approach on vision data from the car domain. The described attention system is part of a biologically motivated advanced driver assistance system running in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Corbetta, M., Shulman, G.: Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience 3, 201–215 (2002)

    Article  Google Scholar 

  2. Egeth, H.E., Yantis, S.: Visual attention: control, representation, and time course. Annual Review of Psychology 48, 269–297 (1997)

    Article  Google Scholar 

  3. Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual attention and how do they do it? Nat. Reviews Neuroscience 5(6), 495–501 (2004)

    Article  Google Scholar 

  4. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology 4(4), 219–227 (1985)

    Google Scholar 

  5. Tsotsos, J.K., Culhane, S.M., Wai, W.Y.K., Lai, Y., Davis, N., Nuflo, F.: Modeling visual attention via selective tuning. Artificial Intelligence 78(1-2), 507–545 (1995)

    Article  Google Scholar 

  6. Navalpakkam, V., Itti, L.: Modeling the influence of task on attention. Vision Research 45(2), 205–231 (2005)

    Article  Google Scholar 

  7. Frintrop, S.: VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search. PhD thesis, University of Bonn Germany (2006)

    Google Scholar 

  8. Michalke, T., Gepperth, A., Schneider, M., Fritsch, J., Goerick, C.: Towards a human-like vision system for resource-constrained intelligent cars. In: Int. Conf. on Computer Vision Systems, Bielefeld (2007)

    Google Scholar 

  9. Frintrop, S., Backer, G., Rome, E.: Goal-directed search with a top-down modulated computational attention system. In: DAGM-Symposium, pp. 117–124 (2005)

    Google Scholar 

  10. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  11. Hardy, R.N.: Homeostasis, Arnold (1983)

    Google Scholar 

  12. Simons, D., Chabris, C.: Gorillas in our midst: Sustained inattentional blindness for dynamic events. British Journal of Developmental Psychology 13, 113–142 (1995)

    Google Scholar 

  13. Trapp, R.: Stereoskopische Korrespondenzbestimmung mit impliziter Detektion von Okklusionen. PhD thesis, University of Paderborn Germany (1998)

    Google Scholar 

  14. Heinke, D., Humphreys, G.: Computational models of visual selective attention: a review. In: Houghton, G. (ed.) Connectionist Models in Psychology, pp. 273–312. Psychology Press (2005)

    Google Scholar 

  15. Frintrop, S., Klodt, M., Rome, E.: A real-time visual attention system using integral images. In: Int. Conf. on Computer Vision Systems, Bielefeld (2007)

    Google Scholar 

  16. BenchmarkData: (2007) http://www.rtr.tu-darmstadt.de/~tmichalk/ICVS2008_BenchmarkData/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Antonios Gasteratos Markus Vincze John K. Tsotsos

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Michalke, T., Fritsch, J., Goerick, C. (2008). Enhancing Robustness of a Saliency-Based Attention System for Driver Assistance. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds) Computer Vision Systems. ICVS 2008. Lecture Notes in Computer Science, vol 5008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79547-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79547-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79546-9

  • Online ISBN: 978-3-540-79547-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics