Skip to main content

Electronic Holographic Displays – 20 Years of Interactive Spatial Imaging

  • Reference work entry
Handbook of Visual Display Technology

Abstract

This chapter reviews the first 20 years of interactive electro-holographic displays and holographic video – from first instance in 1990 through recent innovations in computational approaches and photonic modulation schemes. The enormous computational and photonic challenges required to interactively generate three-dimensional (3D) holographic images are examined, along with descriptions of techniques used to overcome the limitations on holographic computation and high-bandwidth photonic modulation. Included are the techniques of bipolar fringe computation diffraction-specific fringe computation, and utilization of computer graphics hardware as well the scanned acousto-optic modulation technique (used in early display systems) and the liquid-crystal modulation technologies used in recent holographic displays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AOM:

Acousto-optic Modulator

DMD:

Digital Micro-mirror Device

GPU:

Graphical Processing Unit

Hogel:

Holographic Element

HPO:

Horizontal-Parallax-Only

MAC:

Multiplication Accumulation

SLM:

Spatial Light Modulator

References

  1. Mark Lucente (1993) Interactive computation of holograms using a look-up table. J Electron Imaging 2(1):28–34

    Article  Google Scholar 

  2. Lucente M, Galyean TA (1995) Rendering interactive holographic images. In: Proceedings of SIGGRAPH’95, Los Angeles, CA, 6–11 Aug 1995. Computer graphics proceedings, annual conference series. ACM SIGGRAPH, New York, pp 387–394

    Google Scholar 

  3. Mark Lucente (1996) Computational holographic bandwidth compression. IBM Syst J 35(3&4):349–365

    Google Scholar 

  4. Mark Lucente (1996) Holographic bandwidth compression using spatial subsampling. Opt Eng 35(6):1529–1537

    Article  Google Scholar 

  5. Lucente M (1994) Diffraction-specific fringe computation for electro-holography. PhD Thesis, Department of electrical engineering and computer science, Massachusetts Institute of Technology

    Google Scholar 

  6. St Hilaire P, Benton Stephen A, Mark Lucente (1992) Synthetic aperture holography: a novel approach to three dimensional displays. J Opt Soc Am A 9(11):1969–1977

    Article  Google Scholar 

  7. St Hilaire P, Benton SA, Lucente M, Hubel PM (1992) Color images with the MIT holographic video display. In: Benton SA (ed) SPIE proceedings, vol 1667, practical holography VI. SPIE, Bellingham, pp 73–84

    Google Scholar 

  8. St Hilaire P (1995) Scalable optical architecture for electronic holography. Opt Eng 34(10):2900–2911

    Article  Google Scholar 

  9. Fukushima S, Kurokawa T, Ohno M (1991) Real-time hologram construction and reconstruction using a high-resolution spatial light modulator. Appl Phys Lett 58(8):787–789

    Article  Google Scholar 

  10. Benton Stephen A (2001) Selected papers on three-dimensional displays. SPIE Optical Engineering Press, Bellingham

    Google Scholar 

  11. McAllister David F (ed) (1993) Stereo computer graphics and other true 3D technologies. Princeton University Press, Princeton

    Google Scholar 

  12. McAllister DF (2002) Stereo and 3D display technologies, display technology. In Hornak JP (ed) (Hardcover) Encyclopedia of imaging science and technology, vol 2, set 2. Wiley, New York, pp 1327–1344. ISBN 978-0-471-33276-3

    Google Scholar 

  13. Holliman NS (2006) Three-dimensional display systems. In: Dakin JP, Brown RGW (ed) Handbook of optoelectronics, vol I. Taylor and Francis, New York, pp 1067–1100. ISBN 0750306467

    Google Scholar 

  14. McKenna M, Zeltzer D (1992) Three dimensional visual display systems for virtual environments. Presence-Teleop Virt Environ 1(4):421–458

    Google Scholar 

  15. Dodgson Neil A (2005) Autostereoscopic 3D displays. Computer 38(8):31–36

    Article  Google Scholar 

  16. Favalora GE (2005) Volumetric 3D displays and application infrastructure. Computer 38(8):37–44

    Article  Google Scholar 

  17. Naoki Fukaya, Keiichi Maeno, Koki Sato, Toshio Honda (1996) Improved electroholographic display using liquid crystal devices to shorten the viewing distance with both eye observation. Opt Eng 35(6):1545–1549

    Article  Google Scholar 

  18. Onural L, Gotchev A, Ozaktas H, Stoykova E (2007) A survey of signal processing problems and tools in holographic three-dimensional television. IEEE Trans Circ Syst Vid Technol 17:1631

    Article  Google Scholar 

  19. Benton SA, Bove Jr VM (2008) Holographic imaging chapter 19, in computational display holography. Wiley-Interscience, Hoboken. ISBN-13: 978-0470068069

    Google Scholar 

  20. Hariharan P (1984) Optical holography: principles, techniques, and applications. Cambridge University Press, Cambridge

    Google Scholar 

  21. Yoshikawa H (2006) Computer-generated holograms for white light reconstruction, chapter 8. In: Ting-Chung P (ed) Digital holography and three-dimensional display: principles and applications. Springer, New York, pp 235–255

    Chapter  Google Scholar 

  22. Foley JD, Van Dam A, Feiner SK, Hughes JF (1990) Computer graphics: principles and practice. Addison-Wesley, Reading

    Google Scholar 

  23. Watlington JA, Lucente M, Sparrell CJ, Bove Jr VM, Tamitani I (1995) A hardware architecture for rapid generation of electro-holographic fringe patterns. In: Benton SA (ed) Practical holography IX, proceedings of the SPIE, Bellingham, WA, vol 2406, paper 2406-23. SPIE, pp 172–183

    Google Scholar 

  24. Yoshikawa H, Tamai J (1996) Holographic image compression by motion picture coding. In: Benton SA (ed) Practical holography X, proceedings of SPIE, Bellingham, WA. SPIE, pp 2–9

    Google Scholar 

  25. Benton SA, Bove Jr VM (2008) Holographic television, chapter 21. Holographic imaging. Wiley-Interscience, Hoboken. ISBN-13: 978-0470068069

    Google Scholar 

  26. Bove Jr VM, Plesniak WJ, Quentmeyer T, Barabas J (2005) Real-time holographic video images with commodity PC hardware. In: Proceedings of SPIE, stereoscopic displays and applications, vol 5664. SPIE, pp 255–262

    Google Scholar 

  27. Plesniak W, Halle M, Bove Jr VM, Barabas J, Pappu R (2006) Reconfigurable image projection holograms. Opt Eng 45(11):115801

    Google Scholar 

  28. Shimobaba T, Masuda N, Ito T (2009) Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane. Opt Lett 34:3133–3135

    Article  Google Scholar 

  29. Shimobaba T, Hishinuma S, Ito T (2002) Special-purpose computer for holography HORN-4 with recurrence algorithm. Comput Phys Commun 148:160–170

    Article  Google Scholar 

  30. Kang H, Yaras F, Onural L (2009) Graphics processing unit accelerated computation of digital holograms. Appl Opt 48(34):H137–H143

    Article  Google Scholar 

  31. Kohler C, Schwab X, Osten W (2006) Optimally tuned spatial light modulators for digital holography. Appl Opt 45:960–967

    Article  Google Scholar 

  32. Psaltis D, Paek EG, Venkatesh SS (1984) Optical image correlation with a binary spatial light modulator. Opt Eng 23(6):698–704

    Google Scholar 

  33. Mok F, Diep J, Liu H-K, Psaltis D (1986) Real-time computer-generated hologram by means of liquid-crystal television spatial light modulator. Opt Lett 11(11):748–750

    Article  Google Scholar 

  34. Hashimoto N, Morokawa S (1993) Real-time electroholographic system using liquid crystal television spatial light modulators. J Electron Imaging 2(2):93–99

    Article  Google Scholar 

  35. Sanford JL, Schlig ES, Tomooka T, Enami K, Libsch FR (1998) Silicon light-valve array chip for high-resolution reflective liquid crystal projection displays. IBM J Res Dev 42(3/4):347–358

    Article  Google Scholar 

  36. Nordin GP, Kulick JH, Lindquist RG, Jones MW, Nasiatka P, Kowel ST (1995) Liquid crystal-on-silicon implementation of the partial pixel three-dimensional display architecture. Appl Opt 34(19):3756–3763

    Article  Google Scholar 

  37. Ito T, Shimobaba T, Godo H, Horiuchi M (2002) Holographic reconstruction with a 10-micron pixel-pitch reflective liquid-crystal display by use of a light-emitting diode reference light. Opt Lett 27:1406–1408

    Article  Google Scholar 

  38. Michalkiewicz A, Kujawinskaa M, Kozackia T, Wangb X, Bosb PJ (2004) Holographic three-dimensional displays with liquid crystal on silicon spatial light modulator. In: Proceedings of SPIE, Bellingham, WA, vol 5531. SPIE, pp 85–94

    Google Scholar 

  39. Sato K, Sugita A, Morimoto M, Fujii K (2006) Reconstruction of color images of high quality by a holographic display. In: Proceedings of SPIE, vol 6136. SPIE, p 61360V

    Google Scholar 

  40. Reichelt S, Haussler R, Leister N, Futterer G, Schwerdtner A (2008) Large holographic 3D displays for tomorrow’s TV and monitors – solutions, challenges, and prospects. IEEE 2008 LEOS 21st annual meeting. IEEE, New York, p 194

    Google Scholar 

  41. Florence JM, Gale RO (1988) Coherent optical correlator using a deformable mirror device spatial light modulator in the Fourier plane. Appl Opt 27(11):2091–2093

    Article  Google Scholar 

  42. Lucente M (1994) Unpublished work

    Google Scholar 

  43. Kreis T, Aswendt P, Hofling R (2001) Hologram reconstruction using a digital micromirror device. Opt Eng 40:926–933

    Article  Google Scholar 

  44. Onural L, Bozdagi G, Atalar A (1994) New high resolution display device for holographic three dimensional video: principles and simulations. Opt Eng 33(3):835–844

    Article  Google Scholar 

  45. Slinger C, Cameron C, Stanley M (2005) Computer-generated holography as a generic display technology. Computer 38(8):46–53

    Article  Google Scholar 

  46. Active digital hologram display. US Patent 6,859,293, 22 Feb 2005, Zebra Imaging

    Google Scholar 

  47. Ito T, Okano K (2004) Color electroholography by three colored reference lights simultaneously incident upon one hologram panel. Opt Express 12:4320–4325

    Article  Google Scholar 

  48. Takano K, Sato K (2007) Full-color electroholographic three-dimensional display system employing light emitting diodes in virtual image reconstruction. Opt Eng 46:095801

    Article  Google Scholar 

  49. Yamaguchi T, Okabe G, Yoshikawa H (2007) Full-color image-plane holographic video display. In: Proceedings of SPIE, vol 6488. SPIE, Bellingham, p 64880Q

    Google Scholar 

  50. Plesniak WJ, Pappu R (1998) Coincident display using haptics and holographic video. In: Proceedings of ACM SIGCHI conference on human factors in computing systems, Los Angeles, April 1998

    Google Scholar 

  51. Lucente M, Zwart G-J, George AD (1997) Visualization space: a testbed for deviceless multimodal user interface. Comput Graph 31(2); in AAAI spring symposium series, Stanford, CA, 23–25 March 1998

    Google Scholar 

  52. Yamaguchi T, Okabe G, Yoshikawa H (2007) Real-time image plane full-color and full-parallax holographic video display system. Opt Eng 46:125801

    Article  Google Scholar 

  53. Pappu R (1996) Nonuniformly sampled computer-generated holograms. Opt Eng 35(6):1538–1544

    Article  Google Scholar 

  54. Schwerdtner A, Leister N, Häussler R (2007) A new approach to electro-holography for TV and projection displays. SID 2007 international symposium, Digest of technical papers, vol. XXXVIII. Soc. for Information Display, USA, pp 1224–1227

    Google Scholar 

  55. Schwerdtner A, Leister N, Häussler R, Reichelt S (2008) Eye-tracking solutions for real-time holographic 3-D display. SID 2008 international symposium, Digest of technical papers vol XXXIX. Soc. for Information Display, USA, pp 345–347

    Google Scholar 

  56. Peyghambarian N, Tay S, Blanche P-A, Norwood R, Yamamoto M (2008) Rewritable holographic 3D displays. Opt Photonics News 19(7):22–27

    Article  Google Scholar 

  57. Defense Advanced Research Projects Agency (Dec 2010) Urban photonic sandtable (UPSD) program. DARPA Successfully Completes 3D Holographic Display Technology Demonstration Program. http://www.darpa.mil/NewsEvents/Releases/2011/2011/03/24_DARPA_Successfully_Completes_3D_Holographic_Display_Technology_Demonstration_Program.aspx. Accessed March 2011

  58. Zebra Imaging Press Release (June 2010) Zebra Imaging awarded phase II SBIR contract for holographic display by the US air force research laboratory. http://www.zebraimaging.com/news-and-events/news/zebra-imaging-awarded-phase-ii-sbir-contract-for-holographic-display-by-the-us-

  59. Motion Displays (Dec 2010) From Zebra Imaging Inc.http://www.zebraimaging.com/products/motion-displays

Further Reading

  • Benton SA, Bove Jr VM (2008) Holographic imaging. Wiley-Interscience, Hoboken. ISBN-13: 978-0470068069

    Google Scholar 

  • Benton SA (2001) Selected papers on three-dimensional displays. SPIE Optical Engineering Press, Bellingham

    Google Scholar 

  • Dodgson NA (2005) Autostereoscopic 3D displays. Computer 38(8):31–36

    Article  Google Scholar 

  • McAllister DF (ed) (1993) Stereo computer graphics and other true 3D technologies. Princeton University Press, Princeton

    Google Scholar 

  • Slinger C, Cameron C, Stanley M (2005) Computer-generated holography as a generic display technology. Computer 38(8):46–53

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the support of the following: the Department of Defense of the United States of America, and in particular the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL); Zebra Imaging, Inc.; the late Professor Stephen A. Benton of the Massachusetts Institute of Technology, and our former colleagues who helped make early holovideo possible, including Michael Halle, Mary Lou Jepsen, Nicholas Negroponte, Wendy Plesniak, Pierre St. Hilaire, John D. Sutter, John Underkoffler and Hiroshi Yoshikawa.

The RealityEngine2 graphics framebuffer system was manufactured by Silicon Graphics, Inc., Mountain View, CA. It is the forerunner of video cards and graphics cards, such as the GPU-based technologies from nVidia Corp., AMD Corp. (and its Ati technology) and Intel Corp.

Some portions of this chapter are based on a previous publication by the author in SIGGRAPH’s “Current, New, and Emerging Display Systems,” Computer Graphics (A publication of ACM SIGGRAPH) Volume 31, Number 2, pp. 63–67, 1997 May.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Lucente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Lucente, M.E. (2012). Electronic Holographic Displays – 20 Years of Interactive Spatial Imaging. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79567-4_119

Download citation

Publish with us

Policies and ethics