Skip to main content

Human Interface Factors Associated with HWDs

  • Reference work entry
Handbook of Visual Display Technology
  • 689 Accesses

Abstract

This chapter provides a review of selected visual perception issues that impact the design and use of head-worn displays (HWDs). Issues discussed include interocular tolerance limits, binocular rivalry, accommodation–vergence mismatch, field of view, partial overlap HWDs, perceptual constancy, head movements, and head tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HWD:

Head-Worn Display

LE:

Left Eye

RE:

Right Eye

VOR:

Vestibulo-Ocular Reflex

References

  1. Patterson R, Winterbottom M, Pierce B (2006) Perceptual issues with the use of head-mounted displays. Hum Factors 48:555–573

    Article  Google Scholar 

  2. Melzer J, Moffitt K (1997) HWD design – putting the user first. In: Melzer J, Moffitt K (eds) Head mounted displays: designing for the user. McGraw-Hill, New York

    Google Scholar 

  3. Velger M (1998) Helmet-mounted displays and sights. Artech House, Boston

    Google Scholar 

  4. Davis E (1997) Visual requirements in HWDs: what can we see and what do we need to see? In: Melzer J, Moffitt K (eds) Head mounted displays: designing for the user. McGraw-Hill, New York

    Google Scholar 

  5. Ellis SR, Bucher UJ (1994) Distance perception of stereoscopically presented virtual objects optically superimposed on physical objects by a head mounted see-through display. In: Proceedings of the 38th annual meeting of the human factors and ergonomics society, Nashville

    Google Scholar 

  6. Rolland JP, Gibson W, Ariely D (1995) Towards quantifying depth and size perception in virtual environments. Presence 4(1):24–49

    Google Scholar 

  7. Tsou B, Shenker M (2000) Visual factors associated with headmounted displays. In: Bass M (ed) Handbook of optics, vol III, Visual optics: issues pertinent to the optical designer. McGraw-Hill, New York

    Google Scholar 

  8. Rolland JP, Fuchs H (2000) Optical versus video see-through head-mounted displays in medical visualization. Presence Teleoperators Virtual Environ MIT Press 9(3):287–309

    Article  Google Scholar 

  9. Patterson R, Winterbottom M, Pierce B, Fox R (2007) Binocular rivalry and head-mounted displays. Hum Factors 49:1083–1096

    Article  Google Scholar 

  10. Boydstun A, Rogers J, Tripp L, Patterson R (2009) Stereo depth perception survives significant interocular luminance differences. J Soc Inf Disp 17:467–471

    Article  Google Scholar 

  11. Kooi F, Toet A (2004) Visual comfort of binocular and 3D displays. Displays 25:99–108

    Article  Google Scholar 

  12. Hess R, Liu C, Wang Y-Z (2003) Differential binocular input and local stereopsis. Vis Res 43:2303–2313

    Article  Google Scholar 

  13. Patterson R (2009) Human factors of stereo displays: an update. J Soc Inf Disp 17:987–996

    Article  Google Scholar 

  14. Rash C, Mozo B, McEntire B, Licina J (1996) RAH- 66 Comanche health hazard and performance issues for the helmet integrated display and sighting system (Tech. Rep. 97-1). U.S. Army Aeromedical Research Laboratory, Fort Rucker

    Google Scholar 

  15. Blake R (1989) A neural theory of binocular rivalry. Psychol Rev 96:145–167

    Article  Google Scholar 

  16. Breese B (1899) On inhibition. Psychol Monogr 3:1–65

    Google Scholar 

  17. Levelt W (1965) On binocular rivalry. Institute for Perception RVO-TNO, Soesterberg

    Google Scholar 

  18. Meng X, Chen Y, Qian N (2004) Both monocular and binocular signals contribute to motion rivalry. Vis Res 44:45–55

    Article  Google Scholar 

  19. Norman H, Norman J, Bilotta J (2000) The temporal course of suppression during binocular rivalry. Perception 29:831–841

    Article  Google Scholar 

  20. Schall J, Nawrot M, Blake R, Yu K (1993) Visual guided attention is neutralized when informative cues are visible but unperceived. Vis Res 33:2057–2064

    Article  Google Scholar 

  21. Blake R, Boothroyd K (1985) The precedence of binocular fusion over binocular rivalry. Percept Psychophys 37:114–124

    Article  Google Scholar 

  22. Winterbottom M, Patterson R, Pierce B, Taylor A (2006) Visual suppression of monocularly presented symbology against a fused background in simulation and training environment. Proc SPIE Helmet Head Mounted Disp XI Technol Appl 6224:2.1–2.10

    Google Scholar 

  23. Laramee R, Ware C (2002) Rivalry and interference with a head mounted display. ACM Trans Comput Hum Interact 9:238–251

    Article  Google Scholar 

  24. Ogle K (1938) Induced size effect: I. Anew phenomenon in binocular space-perception associated with the relative sizes of the images of the two eyes. Arch Ophthalmol 20:604–623

    Article  Google Scholar 

  25. Pierce B, Arrington K, Moreno M (1999) Motion and stereoscopic tilt perception. J Soc Inf Disp 3:193–206

    Article  Google Scholar 

  26. Pierce B, Howard I (1997) Types of size disparity and the perception of surface slant. Perception 23:1503–1517

    Article  Google Scholar 

  27. Wann J, Ruston S, Mon-Williams M (1995) Natural problems for stereoscopic depth perception in virtual environments. Vis Res 35:2731–2736

    Article  Google Scholar 

  28. Toates F (1972) Accommodation function of the human eye. Physiol Rev 52:828–863

    Google Scholar 

  29. Toates F (1974) Vergence eye movements. Doc Ophthalmol 37:153–214

    Article  Google Scholar 

  30. Wang B, Ciuffreda K (2006) Depth of focus of the human eye: theory and clinical applications. Surv Ophthalmol 51:75

    Article  Google Scholar 

  31. Fisher R (1994) Optics for head-mounted displays. Inf Disp 10:12–16

    Google Scholar 

  32. Kruk R, Longridge T (1984) Binocular overlap in a fiber optic helmet mounted display. In: Proceedings of the 1984 image conference III. The IMAGE Society, Bethesda

    Google Scholar 

  33. Klymenko V, Harding T, Beasley H, Martin J (1999) The effect of helmet mounted display field of view configurations on target acquisition (Tech. Rep. No. 99-19). U.S. Army Aeromedical Research Laboratory, Fort Rucker

    Google Scholar 

  34. Nakayama K, Shimojo S (1990) Da Vinci stereopsis: depth and subjective occluding contours from unpaired image points. Vis Res 30:1811–1825

    Article  Google Scholar 

  35. Luo X, Kenyon R, Kamper D, Sandin D, De-Fanti T (2007) The effects of scene complexity, stereovision, and motion parallax on size constancy in a virtual environment. In: Kenyon R (ed) Virtual reality conference, 2007. IEEE, Piscataway, pp 59–66

    Chapter  Google Scholar 

  36. Foley J, Ribeiro-Filho N, Da Silva J (2004) Visual perception of extent and the geometry of visual space. Vis Res 44:147–156

    Article  Google Scholar 

  37. Geri G, Pierce B, Patterson R (2008) Oculomotor contribution to the change in perceived speed with viewing distance. J Opt Soc Am A 25:2851–2857

    Article  Google Scholar 

  38. von Hofsten C (1976) The role of convergence in visual space perception. Vis Res 16:193–198

    Article  Google Scholar 

  39. Owens D, Leibowitz H (1976) Oculomotor adjustments in darkness and the specific distance tendency. Percept Psychophys 20:2–9

    Article  Google Scholar 

  40. Owens D, Leibowitz H (1980) Accommodation, convergence, and distance perception in low illumination. Am J Optom Physiol Opt 57:540–550

    Google Scholar 

  41. Ellis S, Bucher U, Menges B (1995) The relationship of binocular convergence and errors in judged distance to virtual objects. In: Proceedings of the international federation of automatic control. National Aeronautics and Space Administration, Boston

    Google Scholar 

  42. Edgar G, Pope J, Craig I (1993) Visual accommodation problems with head-up and helmet mounted displays. In: Bartlett C, Cowan M (eds) Proceedings of SPIE: display systems: high-resolution and large screen displays and helmet, head-up, and head-down display. SPIE, Bellingham

    Google Scholar 

  43. Peli E (1990) Visual issues in the use of a head-mounted monocular display. Opt Eng 29:883–892

    Article  Google Scholar 

  44. Benson A, Barnes K (1978) Vision during angular oscillation: the dynamic interaction of visual and vestibular mechanisms. Aviat Space Environ Med 49:340–345

    Google Scholar 

  45. Wells M, Griffin M (1987) A review and investigation of aiming and tracking performance with helmet-mounted sights. IEEE Trans Syst Man Cybern SMC-17:210–221

    Article  Google Scholar 

  46. Wells M, Griffin M (1988) Tracking with the head during whole-body vibration. In: Patrick J, Duncan K (eds) Training, human decision making and control. Elsevier, Amsterdam

    Google Scholar 

  47. Wells M, Griffin M (1984) Benefits of helmet-mounted display image stabilization under whole-body vibration. Aviat Space Environ Med 55:13–18

    Google Scholar 

  48. Wells M, Griffin M (1987) Flight trial of a helmet-mounted display image stabilization system. Aviat Space Environ Med 55:319–322

    Google Scholar 

  49. Wells M, Haas M (1990) Head movements during simulated air-to-air engagements. In: Lewandowski R (ed) Proceedings of SPIE: helmet-mounted displays II. SPIE, Bellingham

    Google Scholar 

  50. Keller K, Colucci D (1998) Perception in HWDs: What is it in head mounted displays (HWDs) that really make them all so terrible? In: Lewandowski R, Haworth L, Girolamo H (eds) Proceedings of SPIE: helmet- and head-mounted displays III. SPIE, Bellingham

    Google Scholar 

  51. Grunwald A, Kohn S (1994) Visual field information in lowaltitude visual flight and line-of-sight slaved helmet-mounted displays. IEEE Trans Syst Man Cybern 24:120–134

    Article  Google Scholar 

  52. So R, Griffin M (1992) Compensation lags in head-coupled displays using head position prediction and image deflection. AIAA J Aircraft 29:1064–1068

    Article  Google Scholar 

  53. Padmos P, Milders M (1992) Quality criteria for simulator images: a literature review. Hum Factors 34:727–748

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Earl Patterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Patterson, R.E. (2012). Human Interface Factors Associated with HWDs. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79567-4_135

Download citation

Publish with us

Policies and ethics