Skip to main content

Flexible Displays: TFT Technology: Substrate Options and TFT Processing Strategies

  • Reference work entry
Handbook of Visual Display Technology

Abstract

TFT Technologies developed for fabricating active matrix (AM) backplanes on rigid glass substrates for conventional flat panel displays cannot readily be used for fabricating active matrix backplanes on flexible substrates and displays. In addition to mechanical handling issues, flexible substrates impose many additional constraints such as process temperature limitation and thermal stress issues due to CTE mismatch with the TFT thin films for fabricating backplanes for flexible displays. In this chapter, we discuss the flexible substrate options and TFT processing strategies for fabricating flexible backplanes and flexible displays using a various display media. Current status on TFT fabrication by printing and roll-to-roll fabrication for flexible displays is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AM EPD:

Active Matrix Electrophoretic Display

AM LCD:

Active Matrix Liquid Crystal Display

AM OLED:

Active Matrix Organic Light Emitting Display

a-Si:H:

Hydrogenated Amorphous Silicon

CNT:

Carbon Nanotubes

ELA:

Excimer Laser Annealing

EPD:

Electrophoretic Display

LCD:

Liquid Crystal Display

LTPS:

Low-Temperature Polysilicon

MEMS:

Micro-Electromechanical Systems

MOSFET:

Metal Oxide Semiconductor Field Effect Transistor

OLED:

Organic Light Emitting Diode

OSC-TFT:

Oxide Semiconductor Thin Film Transistor

OTFT:

Organic Thin Film Transistor

PEN:

Polyethylene Naphthalate

PI:

Polyimide

RTR:

Roll-to-Roll

TCE:

Thermal Coefficient of Expansion

TFT:

Thin Film Transistor

ULTPS:

Ultralow-Temperature Polysilicon

References

  1. Erlat AG, Yan M, Duggal AR (2009) Substrates and thin film barrier technology for flexible electronics. In: Wong WS, Sallelo A (eds) Flexible electronics. Springer, New York

    Google Scholar 

  2. Jin DU, Jeong JK, Kim TW, Lee JS, Ahn TK, Mo YK, Chung HK (2006) Flexible AM OLED display on stainless steel foil. J Soc Inf Disp 14(12):1083–1090

    Article  Google Scholar 

  3. Paek SH, Kim KL, Seo HS, Jeong YS, Yi SY, Lee SY, Choi NB, Kim SH, Kim CD, Chung IJ (2006) 10.1 inch SVGA ultra thin and flexible active matrix electrophoretic display. SID ’06 Dig 37(1):1834–1837

    Article  Google Scholar 

  4. Raupp GB, Colaneri N, O’Rourke SM, Kaminski J, Allee DR, Venugopal SM, Bawolek EJ, Loy DE, Moye C, Angeno SK, O’Brien BP, Bottesch D, Rednour S, Blanchard R, Marrs M, Dailey J, Long K (2006) Flexible display technology in a pilot line manufacturing environment. In: Army science conference, Orlando, 27–30 Nov 2006

    Google Scholar 

  5. Raupp G (2007) Active matrix TFT technology development and pilot line manufacturing for reflective and emissive flexible displays. In: Proceedings of the USDC flexible displays & microelectronics conference & exhibit, Phoenix, Az, 5–8 Feb 2007

    Google Scholar 

  6. Jin DU, Jeong JK, Shin HS, Kim MK, Ahn TK, Kwon SY, Kwack JHo, Kim TW, Mo YG, Chung HK (2006) 5.6-inch Flexible full color top emission AM OLED display on stainless steel foil. SID ’06 Dig 37(1):1855–1857

    Article  Google Scholar 

  7. Chwang A, Hewitt R, Urbanik K, Silvernail J, Rajan K, Hack M, Brown J, Lu JP, Shih C, Ho J, Street R, Ramos T, Moro L, Rutherford N, Tognoni K, Anderson B, Huffman D (2006) Full color 100 dpi AMOLED displays on flexible stainless steel substrates. SID ’06 Dig 37:1858–1861

    Article  Google Scholar 

  8. Paek SH, Park YI, Park CH, Lim YS, Shin SI, Kim CD, Hwang YK (2010) Flexible display technology for a mass production using the improved etching technology. SID ’10 Dig 41(1):1047–1049

    Article  Google Scholar 

  9. Long K, Kattami AZ, Chen IC, Gleskova H, Wagner S, Sturm J (2006) Stability of amorphous silicon TFTs deposited on clear plastic substrates at 250°C to 280°C. IEEE Electron Device Lett 27(2):111–113

    Article  Google Scholar 

  10. Sarma KR, Chanley C, Dodd S, Roush J, Schmidt J, Srdanov G, Stevenson M, Yu G, Wessel R, Innocenzo J, O’Regan M, MacDonald WA, Eveson R, Long K, Gleskova H, Wagner S, Sturm JC (2003) Active matrix OLED using 150°C a-Si TFT backplane. In: Proceedings of the SPIE 2003, Orlando. Cockpit displays X, vol 5080, pp 180–191

    Google Scholar 

  11. Sarma KR, Schmidt J, Roush J, Dodd S, Chanley C (2004) Active matrix OLED displays using a-Si TFT backplanes fabricated on flexible plastic substrates. In: Proceedings of the SPIE defence displays conference, Orlando, FL, April 2004

    Google Scholar 

  12. Sarma KR et al (2007) Flexible OLED displays. In: Proceedings of the AM FPD ’07, Hugo

    Google Scholar 

  13. MacDonald WA, Mace JM, Polack NP (2002) 45th Annual technical conference proceedings of the Society of Vacuum Coaters, p 482

    Google Scholar 

  14. MacDonald WA (2004) Engineered films for display technologies. J Mater Chem 14:4–10

    Article  Google Scholar 

  15. MacDonald WA, Eveson R, MacKerron D, Adam R, Rollins K, Rustin R, Looney MK, Hashimoto K (2006) The impact of environment on dimensional reproducibility of polyester film during flexible electronics processing. SID ’06 Dig 37(1):414–417

    Article  Google Scholar 

  16. Eveson R, MacDonald WA, MacKerron D, Hadgson A, Adam R, Rakos K, Rollins K, Rustin R, Looney SJ, Asai M, Hashimoto K (2008) Optimizing polyester films for flexible electronics applications. SID ’08 Dig 39(1):1431–1434

    Article  Google Scholar 

  17. Graff G, Burrows PE, Williford RE, Praino RF (2005) Barrier layer technology for flexible displays. In: Crawford GP (ed) Flexible flat panel displays. Wiley, Chichester

    Google Scholar 

  18. Moro M, Chu X, Hirayama H, Krajewski T, Visser RJ (2006) A mass manufacturing process for Barix encapsulation of OLED displays. In: IMID/IDMC, Daegu Exhibition and Convention Center (EXCO), Daegu, 22–25 Aug 2006

    Google Scholar 

  19. Kwon JY, Jung JS, Park KB, Kim JM, Lim H, Lee SY, Kim JM, Noguchi T, Hur JH, Jang J (2006) 2.2 inch qqVGA AMOLED driven by Ultra Low Temperature Poly Silicon (ULTPS) TFT direct fabricated below 200°C. SID’06 Dig 37(2):1358–1361

    Article  Google Scholar 

  20. Gosain DP, Usui TNS (2000) High mobility thin film transistors fabricated on plastic substrates as process temperature of 110°C. Jpn J Appl Phys 39L:179

    Article  Google Scholar 

  21. Gleskova H, Wagner S (2001) DC-gate bias stressing of a-Si:H TFTs fabricated at 150°C on ployimide foil. IEEE Trans Electron Device 48(8):1667

    Article  Google Scholar 

  22. Gleskova H, Wagner S (1999) Amorphous silicon thin-film transistors on compliant polyimide foil substrates. IEEE Electron Device Lett 20(9):473

    Article  Google Scholar 

  23. He S, Nishiki H, Hartzell J, Nakata Y (2000) Low temperature PECVD a-Si TFT for plastic substrate. SID 2000 Dig 31(1):278–281

    Article  Google Scholar 

  24. Wagner S, Han L, Hekmatshoar B, Song K, Mandlik P, Cherenack KH, Sturm J (2010) Amorphous silicon TFT technology for rollable OLED displays. SID ’10 Dig 41(1):917–920

    Article  Google Scholar 

  25. Nomoto K (2010) Development of flexible displays driven by organic TFTs. SID ’10 Digest, p 1165

    Google Scholar 

  26. Gundlach DJ, Kuo DJ, Nelson CC, Jackson TN (1999) Organic thin film transistors with field effect mobility >2 cm2/V-sec. IEEE Electron Device Lett: p 164

    Google Scholar 

  27. Burns SE et al (2006) A flexible plastic SVGA e-paper display. SID’06 Dig 37(1):74–76

    Article  Google Scholar 

  28. Noda M, Kobayashi N, Katsuhara M, Yumoto A, Ushikura SI, Yasuda RI, Hirai N, Yukawa G, Yagi I, Nomoto K, Urabe T (2010) A rollable AM-OLED display driven by OTFTs. SID ’10 Dig 41(1):710–713

    Article  Google Scholar 

  29. Burns S (2010) QUE: an e-Reader built using flexible display technology. SID ’10 Dig:477–479

    Google Scholar 

  30. Hirao T, Furuta M, Furuta H, Matsuda T, Hiramatsu T, Hokari H, Yoshida M (2006) High mobility top-gate zinc oxide thin film transistors (ZnO-TFTs) for active matrix liquid crystal displays. SID ’06 Digest, pp 18–21

    Google Scholar 

  31. Carcia PF, McLean RS, Reilly MH (2005) Oxide engineering of ZnO thin-film transistors for flexible electronics. J Soc Inf Disp 13:547

    Article  Google Scholar 

  32. Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H (2004) Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432:488

    Article  Google Scholar 

  33. Kamiya T, Nomura K, Hosono H (2009) J Disp Technol 5(7):273

    Article  Google Scholar 

  34. Mo YG, Kim M, Kang CK, Jeong JH, Park YS, Choi CG, Kim HD, Kim SS (2010) Amorphous oxide TFT backplane for large size AMOLED TVs. SID ’10 Dig 41(1):1037–1040

    Article  Google Scholar 

  35. Suzuki M, Fukagawa H, Nakajima Y, Suzuki T, Yamamoto T, Tokito S (2008) 5.8-inch Phosphorescent color AM-OLED display driven by OTFTs on plastic substgrate. In: IDW’08, Toki Messe Niigata Convention Center, Niigata, 3–5 Dec 2008, p 1515

    Google Scholar 

  36. Chuang TK, Troccoli M, Hatalis M, Voutsas A (2007) Polysilicon TFT technology on flexible metal foil for AM PLED displays. J Soc Inf Disp 15(7):455

    Article  Google Scholar 

  37. Kattamis AZ, Giebink N, Cheng CC, Wagner S, Forrest SR, Hong Y, Cannella V (2007) Active-matrix organic light-emitting displays employing two thin-film-transistor a-Si:H pixels on flexible stainless-steel foi. J Soc Inf Disp 15(7):433

    Article  Google Scholar 

  38. Arihara K, Kano M, Motai K, Naitou Y, Kadowaki M, Nakajima H, Tsuboi T, Kato C, Kishimoto Y, Maeda H (2009) Fabrication of flexible 4.7-inch QVGA AM-OLED panel driven by In-Ga-Zn-Oxide TFTs with flexible color filter. In: IDW ’09, World Convention Center Summit, Miyazaki, 9–11 Dec 2009, p 1613

    Google Scholar 

  39. Utsunomiya S et al (2003) Flexible color AM OLED display fabricated using surface free technology by laser ablation/annealing (SUFTLA®) and Ink-jet Printing Technology. SID ’03 Dig 34(1):864–867

    Article  Google Scholar 

  40. Inoue S, Utsunomiya S, Saeki T, Shimoda T (2002) Surface-free technology by laser annealing (SUFTLA) and its application to poly-Si TFT-LCDs on Plastic film with integrated drivers. IEEE Trans Electron Device 49(8):1353

    Article  Google Scholar 

  41. Miyasaka M (2007) Suftla flexible microelectronics on their way to business. SID ’07 Dig 38(1):1673–1676

    Article  Google Scholar 

  42. Miyasaka M, Nebashi S, Shimoda T (2006) Suftla flexible active-matrix electrophoretic displays. In: IMID/IDMC ’06 Digest, Daegu Exhibition and Convention Center (EXCO), Daegu, 22–25 Aug 2006, p 466

    Google Scholar 

  43. Asano A, Kinoshita T, Otani N (2003) A plastic 3.8-in low-temperature polycrystalline silicon TFT color LCD panel. SID ’03 Digest, pp 988–991

    Google Scholar 

  44. Hwang TH, Lee W, Hong WS, Kim SJ, Kim SI, Roh NS, Nikulin I, Choi JY, Jeon HI, Hong SJ, Lee JK, Han MJ, Baek SJ, Kim M, Lee SUk, Shin SS (2007) 14.3 inch active matrix-based plastic electrophoretic display using low temperature processes. SID ’07 Dig 38(1):1684–1685

    Article  Google Scholar 

  45. Raupp GB, O’Rourke SM, Moyer C, O’Brien BP, Ageno SK, Loy DE, Bawolek EJ, Allee DR, Venugopal SM, Kaminski JP, Bottesch D, Dailey J, Long K, Marrs M, Munizza MR, Haverinen H, Colaneri N (2007) Low-temperature amorphous-silicon backplane technology development for flexible displays in a manufacturing pilot-line environment. J Soc Inf Disp 15(7):445

    Article  Google Scholar 

  46. O’Rourke SM, Venugopal SM, Raupp GB, Allee DR, Ageno S, Bawolek EJ, Loy DE, Kaminski JP, Moyer C, O’Brien B, Long K, Marrs M, Bottesch D, Dailey J, Trujillo J, Cordova R, Richards M, Toy D, Colaneri N (2008) Active matrix electrophoretic displays on temporary bonded stainless steel substrates with 180°C a-Si:H TFTs. SID ’08 Dig 39(1):422–424

    Article  Google Scholar 

  47. Loy D, Lee YK, Bell C, Richards M, Bawolek E, Ageno S, Moyer C, Marrs M, Venugopal SM, Kaminski J, Colaneri N, O’Rourke SM (2009) Active matrix PHOLED displays on temporary bonded polyethylene naphthalate substrates with 180°C a-Si:H TFTs. SID ’09 Dig 40(1):988–991

    Article  Google Scholar 

  48. Ma R, Rajan K, Silvernail J, Urbanik K, Paynter J, Mandlik P, Hack M, Brown JJ, Yoo JS, Jung SH, Kim YC, Yoon SY, Kim CD, Kang IB, Hwang YK, Chung IJ, Tognoni K, Anderson R, Huffman D (2010) Wearable 4-in. QVGA full-color-video flexible AMOLEDs for rugged applications. J Soc Inf Disp 18(1):50

    Article  Google Scholar 

  49. Battersby S, Fench I (2006) Plastic displays made by standard a-Si TFT technology. In: IMID/IDMC ’06, Daegu Exhibition and Convention Center (EXCO), Daegu, 22–25 Aug 2006, p 1546

    Google Scholar 

  50. French I, George D, Kretz T, Templier F, Lifka F (2007) Flexible displays and electronics made in AM-LCD facilities by the EPLaRTM process. SID ’07 Digest, p 1680

    Google Scholar 

  51. French I (2009) Flexible e-books. SID ’09 Digest, p 100

    Google Scholar 

  52. Pecora A, Maiolo L, Cuscuna M, Simeone D, Minotti A, Mariucci L, Fortunato G (2008) Low-temperature polysilicon thin film transistors on polyimide substrates for electronics on plastic. Solid State Electron 52:348–352

    Article  Google Scholar 

  53. Lee CC, Chang YY, Cheng HC, Ho JC, Chen J (2010) A novel approach to make flexible active matrix displays. SID ’10 Dig 41(1):810–813

    Article  Google Scholar 

  54. Cheng HC, Huang YS, Liu CJ, Li CW, Ho KY, Cheng CH, Peng SY, Chen YP, Lin HC, Kung BC, Lee PF, Huang JJ, Jiang LY, Lee CC (2009) Plastic substrate and backplane for flexible AM OLED by sheet to sheet process. IDW ’09, World Convention Center Summit, Miyazaki, 9–11 Dec 2009, p 1601

    Google Scholar 

  55. Jang J, Choi MH, Cheon JY (2010) TFT technologies for flexible displays. SID ’10 Dig 41(1):1143–1146

    Article  Google Scholar 

  56. Jin DU, Lee JS, Kim TW, An SG, Straykhilev D, Pyo YS, Kim HS, Lee DB, Mo YG, Kim HD, Chung HK (2009) World-largest (6.5″) flexible full color top emission AMOLED display on plastic film and its bending properties. SID ’09 Digest, pp 983–985

    Google Scholar 

  57. An S, Lee J, Kim Y, Kim T, Jin D, Min H, Chung HK, Kim SS (2010) 2.8-inch WQVGA flexible AMOLED using high performance low temperature polysilicon TFT on plastic substrates. SID ’10 Dig

    Google Scholar 

  58. Jin DU, Kim TW, Koo HW, Stryakhilev D, Kim HS, Seo SJ, Kim MJ, Min HK, Chung HK, Kim SS (2010) Highly robust flexible AM OLED display on plastic substrate with new structure. SID ’10 Dig 41(1):703–705

    Article  Google Scholar 

  59. Sujuki S, Yutani K, Nakashima M, Onodera A, Mizukami S, Kato M, Tano T, Tomono H, Yanagisawa M, Kameyama K (2009) A 200 ppi all-printed organic TFT backplane for flexible electrophoretic displays. In: IDW ’09, World Convention Center Summit, Miyazaki, 9–11 Dec 2009, p 1581

    Google Scholar 

  60. Hong Y, Chung S (2010) Technical issues towards all inkjet-printed organic thin-film transistors. SID ’10 Dig 41(1):1147–1150

    Article  Google Scholar 

  61. Takechi K, Yamaguchi S, Tanabe H, Kaneko S (2010) Development of rollable silicon thin-film-transistor backplanes utilizing a roll-to-roll continuous lamination process. J Soc Inf Disp 18(6):391

    Article  Google Scholar 

  62. Taussig C, Cobene R, Elder R, Jackson W, Jam M, Jeans A, Luo H, Maltabes J, Mei P, Smith M, Perlov C, Zhao L (2010) Roll-to-roll manufacturing of backplanes for paper-like displays. SID ’10 Dig 41(1):1151–1154

    Article  Google Scholar 

  63. Miyasaka M, Hara H, Karaki N, Inoue S, Kawai K, Nebashi S (2008) Technical obstacles to thin film transistor circuits on plastic. Jpn JAP 47(6):4430

    Google Scholar 

  64. Fortunato G, Cuscuna M, Gaucci P, Maiolo L, Mariucci L, Pecora A, Valletta A, Templier F (2009) Self-heating effects in p-channel polysilicon TFTs fabricated on different substrates. J Korean Phys Soc 54(1):455

    Article  Google Scholar 

Suggestions for Further Reading on Poly-Si TFTs

  • Wong WS, Salleo A (eds) (2009) Flexible electronics: materials and applications. Springer, New York. ISBN:978-0-387-74362-2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalluri R. Sarma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Sarma, K.R. (2012). Flexible Displays: TFT Technology: Substrate Options and TFT Processing Strategies. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79567-4_62

Download citation

Publish with us

Policies and ethics