Skip to main content

A Logspace Algorithm for Partial 2-Tree Canonization

  • Conference paper
Computer Science – Theory and Applications (CSR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5010))

Included in the following conference series:

Abstract

We show that partial 2-tree canonization, and hence isomorphism testing for partial 2-trees, is in deterministic logspace. Our algorithm involves two steps: (a) We exploit the “tree of cycles” property of biconnected partial 2-trees to canonize them in logspace. (b) We analyze Lindell’s tree canonization algorithm and show that canonizing general partial 2-trees is also in logspace, using the algorithm to canonize biconnected partial 2-trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arvind, V., Das, B., Köbler, J.: The space complexity of k-tree isomorphism. In: Proc. 18th International Symposium on Algorithms and Computation. LNCS, pp. 822–833. Springer, Heidelberg (2007)

    Google Scholar 

  2. Allender, E.: Arithmetic circuits and counting complexity classes. In: Krajíček, J. (ed.) Complexity of Computations and Proofs. Seconda Universita di Napoli. Quaderni di Matematica, vol. 13, pp. 33–72 (2004)

    Google Scholar 

  3. Allender, E., Ogihara, M.: Relationships among PL, #L and the determinant. R.A.I.R.O. Informatique Théorique et Applications 30(1), 1–21 (1996)

    MATH  MathSciNet  Google Scholar 

  4. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics 23(2), 11–24 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arnborg, S., Proskurowski, A.: Canonical representations of partial 2- and 3-trees. BIT 32(2), 197–214 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Babai, L., Erdős, P., Selkow, S.M.: Random graph isomorphism. SIAM Journal on Computing 9(3), 628–635 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  7. Babai, L., Kučera, L.: Canonical labelling of graphs in linear average time. In: Proc. 20th IEEE Symposium on the Foundations of Computer Science, pp. 39–46 (1979)

    Google Scholar 

  8. Babai, L., Luks, E.: Canonical labeling of graphs. In: Proc. 15th ACM Symposium on Theory of Computing, pp. 171–183 (1983)

    Google Scholar 

  9. Gurevich, Y.: From invariants to canonization. Bulletin of the European Association of Theoretical Computer Science (BEATCS) 63, 115–119 (1997)

    MATH  MathSciNet  Google Scholar 

  10. Grohe, M., Verbitsky, O.: Testing graph isomorphism in parallel by playing a game. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 3–14. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Hoffmann, C.M.: Group-Theoretic Algorithms and Graph Isomorphism. LNCS, vol. 136. Springer, Heidelberg (1982)

    MATH  Google Scholar 

  12. Harary, F., Palmer, E.M.: On acyclic simplicial complexes. Mathematica 15, 115–122 (1968)

    MathSciNet  Google Scholar 

  13. Jakoby, A., Liskiewicz, M.: Paths Problems in Symmetric Logarithmic Space. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 269–280. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Jenner, B., Köbler, J., McKenzie, P., Torán, J.: Completeness results for graph isomorphism. Journal of Computer and System Sciences 66, 549–566 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kloks, T.: Treewidth: Computation and Approximation. LNCS, vol. 842. Springer, Heidelberg (1994)

    Google Scholar 

  16. Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: Its Structural Complexity. In: Progress in Theoretical Computer Science. Birkhäuser, Boston (1993)

    Google Scholar 

  17. Lindell, S.: A logspace algorithm for tree canonization. In: Proc. 24th ACM Symposium on Theory of Computing, pp. 400–404. ACM Press, New York (1992)

    Google Scholar 

  18. Luks, E.M.: Permutation groups and polynomial time computations. In: Finkelstein, L., Kantor, W.M. (eds.) Groups and Computation. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 11, pp. 139–175. American Mathematical Society (1993)

    Google Scholar 

  19. Reingold, O.: Undirected ST-connectivity in log-space. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 376–385 (2005)

    Google Scholar 

  20. Thierauf, T., Wagner, F.: The isomorphism problem for planar 3-connected graphs is in unambiguous logspace. Technical Report TR07-068, Electronic Colloquium on Computational Complexity (ECCC) (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edward A. Hirsch Alexander A. Razborov Alexei Semenov Anatol Slissenko

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arvind, V., Das, B., Köbler, J. (2008). A Logspace Algorithm for Partial 2-Tree Canonization. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds) Computer Science – Theory and Applications. CSR 2008. Lecture Notes in Computer Science, vol 5010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79709-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79709-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79708-1

  • Online ISBN: 978-3-540-79709-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics