Abstract
Satisfiability of real-world Sat instances can be often decided by focusing on a particular subset of variables - a so-called Backdoor Set. In this paper we suggest two algorithms to compute Renameable Horn deletion backdoors. Both methods are based on the idea to transform the computation into a graph problem. This approach could be used as a preprocessing to solve hard real-world Sat instances. We also give some experimental results of the computations of Renameable Horn backdoors for several real-world instances.
This work was partly supported by DFG-SPP 1307, project “Structure-based Algorithm Engineering for SAT-Solving”.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dimacs, ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/
The international SAT competition (2002-2007), http://www.satcompetition.org
Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Proc. Lett. 8, 121–123 (1979)
Buresh-Oppenheim, J., Mitchell, D.G.: Minimum witnesses for unsatisfiable 2CNFs. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, Springer, Heidelberg (2006)
Chen, J., Liu, Y., Lu, S.: Directed feedback vertex set problem is fpt. In Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs (2007)
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)
Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)
Demetrescu, C., Finocchi, I.: Combinatorial algorithms for feedback problems in directed graphs. Inf. Process. Lett. 86(3), 129–136 (2003)
Dilkina, B., Gomes, C.P., Sabharwal, A.: Tradeoffs in the complexity of backdoor detection. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, Springer, Heidelberg (2007)
Interian, Y.: Backdoor sets for random 3-sat. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, Springer, Heidelberg (2004)
Lewis, H.R.: Renaming a set of clauses as a horn set. J. ACM 25, 134–135 (1978)
Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to Horn and Binary clauses. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, Springer, Heidelberg (2005)
Nishimura, N., Ragde, P., Szeider, S.: Solving #SAT using vertex covers. Acta Informatica 44(7-8), 509–523 (2007)
Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
Paris, L., Ostrowski, R., Siegel, P., Sais, L.: Computing horn strong backdoor sets thanks to local search. In: ICTAI 2006, IEEE Computer Society, Los Alamitos (2006)
Ruan, Y., Kautz, H.A., Horvitz, E.: The backdoor key: A path to understanding problem hardness. In: AAAI, pp. 124–130 (2004)
Sinz, C.: SAT benchmarks (2003), http://www-sr.informatik.uni-tuebingen.de/~sinz/DC
Szeider, S.: Backdoor sets for dll subsolvers. J. Autom. Reasoning 35, 73–88 (2005)
Szeider, S.: Matched formulas and backdoor sets. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, Springer, Heidelberg (2007)
Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: IJCAI (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kottler, S., Kaufmann, M., Sinz, C. (2008). Computation of Renameable Horn Backdoors. In: Kleine Büning, H., Zhao, X. (eds) Theory and Applications of Satisfiability Testing – SAT 2008. SAT 2008. Lecture Notes in Computer Science, vol 4996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79719-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-79719-7_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79718-0
Online ISBN: 978-3-540-79719-7
eBook Packages: Computer ScienceComputer Science (R0)