Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4996))

  • 771 Accesses

Abstract

Satisfiability of real-world Sat instances can be often decided by focusing on a particular subset of variables - a so-called Backdoor Set. In this paper we suggest two algorithms to compute Renameable Horn deletion backdoors. Both methods are based on the idea to transform the computation into a graph problem. This approach could be used as a preprocessing to solve hard real-world Sat instances. We also give some experimental results of the computations of Renameable Horn backdoors for several real-world instances.

This work was partly supported by DFG-SPP 1307, project “Structure-based Algorithm Engineering for SAT-Solving”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dimacs, ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/

  2. The international SAT competition (2002-2007), http://www.satcompetition.org

  3. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Proc. Lett. 8, 121–123 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  4. Buresh-Oppenheim, J., Mitchell, D.G.: Minimum witnesses for unsatisfiable 2CNFs. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Chen, J., Liu, Y., Lu, S.: Directed feedback vertex set problem is fpt. In Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs (2007)

    Google Scholar 

  6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  7. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  8. Demetrescu, C., Finocchi, I.: Combinatorial algorithms for feedback problems in directed graphs. Inf. Process. Lett. 86(3), 129–136 (2003)

    Article  MathSciNet  Google Scholar 

  9. Dilkina, B., Gomes, C.P., Sabharwal, A.: Tradeoffs in the complexity of backdoor detection. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Interian, Y.: Backdoor sets for random 3-sat. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, Springer, Heidelberg (2004)

    Google Scholar 

  11. Lewis, H.R.: Renaming a set of clauses as a horn set. J. ACM 25, 134–135 (1978)

    Article  MATH  Google Scholar 

  12. Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to Horn and Binary clauses. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, Springer, Heidelberg (2005)

    Google Scholar 

  13. Nishimura, N., Ragde, P., Szeider, S.: Solving #SAT using vertex covers. Acta Informatica 44(7-8), 509–523 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  15. Paris, L., Ostrowski, R., Siegel, P., Sais, L.: Computing horn strong backdoor sets thanks to local search. In: ICTAI 2006, IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  16. Ruan, Y., Kautz, H.A., Horvitz, E.: The backdoor key: A path to understanding problem hardness. In: AAAI, pp. 124–130 (2004)

    Google Scholar 

  17. Sinz, C.: SAT benchmarks (2003), http://www-sr.informatik.uni-tuebingen.de/~sinz/DC

  18. Szeider, S.: Backdoor sets for dll subsolvers. J. Autom. Reasoning 35, 73–88 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Szeider, S.: Matched formulas and backdoor sets. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: IJCAI (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hans Kleine Büning Xishun Zhao

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kottler, S., Kaufmann, M., Sinz, C. (2008). Computation of Renameable Horn Backdoors. In: Kleine Büning, H., Zhao, X. (eds) Theory and Applications of Satisfiability Testing – SAT 2008. SAT 2008. Lecture Notes in Computer Science, vol 4996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79719-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79719-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79718-0

  • Online ISBN: 978-3-540-79719-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics