
ar
X

iv
:0

80
6.

12
84

v1
 [

cs
.C

R
]

 7
 J

un
 2

00
8

The Separation of Duty with Privilege Calculus ⋆

Chenggong Lv1, Jun Wang1, Lu Liu1, and Weijia You1

Beihang University, Beijing 100083, P.R. China,
lcgong@gmail.com, king.wang@buaa.edu.cn,
liulu@buaa.edu.cn, weijiawx@gmail.com

Abstract. This paper presents Privilege Calculus (PC) as a new ap-
proach of knowledge representation for Separation of Duty (SD) in the
view of process and intents to improve the reconfigurability and trace-
ability of SD. PC presumes that the structure of SD should be reduced
to the structure of privilege and then the regulation of system should be
analyzed with the help of forms of privilege.

1 Introduction

The Separation of Duty (SD) is a security principle that is used to formulate
multi-person control policies, which requires that two or more different people
be responsible for completion of a task or a set of related tasks [1]. The Role-
Based Access Control (RBAC) system is defined by a state machine model and
characterized by the fact that a user’s rights to access objects are defined by the
user’s membership to a “role” and by the roles’ permissions to perform operations
on those objects [2]. Hence, the role is a semantic referent of duty representation
and the structure of role is a division of rights in cross-organization systems.
With the help of assignment operation, the user-role assignment can be handled
by one while permission-role assignment is handled by another [3].

Because the permission assignment on role hierarchy is static, Sandhu [4]
introduced the Role Activation Hierarchy (RAH). RAH extends the permission-
usage hierarchy and makes the role activation governed by an activation hierar-
chy. Sandhu argued that the administration of RBACmust itself be decentralized
and managed by administrative roles. Moreover, Ferraiolo [5] argued that static
separation of duty enforces constraints on the assignment of users to roles, and
dynamic separation duty places constraints on roles that can be activated within
or across a user’s session.

Although the delegation model [6] is helpful to resolve the temporal per-
mission assignment problem by the delivery of duty in trust, the permission
delegated has to crosscut two or more roles in RAH and the definition working
to map between them is not easy. Also, for the constraints in RBAC, there is
an inconsistency between the access control policy and the constraints that are
specified to limit this policy. One transform limit may preclude, by a constraint,

⋆ We are grateful for the supporting of the National Natural Science Foundation of
China (NSFC, Project No. 70401001).

http://arxiv.org/abs/0806.1284v1

the change in another transform limit even though the rights that embody the
conflict have not been assigned yet [7]. So extra mechanisms were integrated to
detect [8] and resolve [9] the conflict. Jaeger has argued that since fail-safety
is often a goal of secure systems, some form of conflict resolution may not be
unreasonable, but the trade-off is not clear-cut [7].

It is the question that how to keep change of condition predictable and how
control exists after reconfiguration in dynamic way, for which the essential chal-
lenge is, we believe , the representation of SD still. Our approach is enlightened
by π-calculus that makes process reconfigurable [10], and assumes that the duty
is composed of the interaction commitment of process, i.e. privilege(see section
3.3), and the result of SD is a collection of interaction commitments, i.e. regula-
tion(see section 2). The examples in section 5 show the flexibility and usefulness
of our approach.

2 Regulation

There are two synchronized complementary actions in an interaction [10]. The
guarded action is an action with one preceding action that has not been reduced.
We have two processors that execute these actions respectively. These actions
represent the semantics of this interaction of the two processors.

A component is featured with the composition of distinct functions and con-
sists of corresponding processors. One function features one processor in design,
and one processor runs one action in one process (runtime). The sequence of
observed action represents a process and reflects the implementation of function
intention. So the sequence of programmed action represents an interaction com-
mitment. Moreover, the intersection of interaction commitment involved in an
interaction are not empty.

Although component is neutral, system works in a conservative way. The
framework of system is a guarding processor and guards each interaction of
two managed components. The guarding interaction of framework precedes the
guarded interaction of component.

Regulation of system is a collection of interaction commitments, including
the interaction commitments of framework and of component. For the systems
based on privilege calculus, the result of separation of duty is regulation, i.e. a
collection of privilege.

3 Structure of Privilege

In this section, we give the structure of privilege with the help of notions, em-
ployment and condition. The notion of employment is the refined structure of
function intention.

3.1 Employment

Definition 1. The function-entity employment f/e means that function f is

employed on entity e.

Proposition 1. There are employments, f1/e1 and f2/e2,

f1/e1 + f2/e2 = ∅ ⇐⇒ f1/e1 = ∅ ∧ f2/e2 = ∅

Then we introduce the left employment mergence of function-entity.

Proposition 2. There are employments, f1/e1 6= ∅ and f2/e2 6= ∅.

(f1/e1) ∗ (f2/e2) =

{

f/e, if f = f1 = f2 6= ∅ and e = e1 = e2 6= ∅;

∅, otherwise.

Definition 2. F is a collection of functions, and E is a collection of entities.

The employment F/E is a set {f/e|f ∈ F, e ∈ E}.

Let F , F1, and F2 be respectively a collection of functions, and let E, E1, and
E2 be a collection of entities. We have f1 ∈ F1, f2 ∈ F2, e1 ∈ E1, and e2 ∈ E2.
The mergence of employment is

F1/E1 ∗ F2/E2 = {f1/e1 ∗ f2/e2 6= ∅} . (1)

The composition of employment is

F1/E1 + F2/E2 = {f1/e1 6= ∅ ∨ f2/e2 6= ∅} . (2)

For the convenience of computation, we give F/∅ = ∅, ∅/E = ∅ and ∅/∅ = ∅.
If no confusion arises, these expressions,f/e, {f} /e and f/ {e}, are the same as
{f} / {e}. With definition 2 and equations 1 and 2, we prove that the employment
are associative, commutative and distributive.

3.2 Condition

Regulation is different from process, which we have discussed in section 2. The
condition acts as the connection with the state of “process world”. In this sub-
section, we propose the definition of condition.

Definition 3. The fact set T is a collection of subsets of statement collection

S. The fact set T on S has the following properties:

1. ∅ and S are in T .
2. The union of the elements of any sub-collection of T is in T .
3. The intersection of the elements of any finite sub-collection of T in T .

Definition 4. Fact set T on S, condition r is a function r : Ts → {1, 0} with

the property: ∀x1, x2 ∈ T and x1 ∩ x2 = ∅, r(x1 ∪ x2) = r(x1) ∨ r(x2).

The {1, 0} is the true value. If the fact x ∈ T , we call that the condition r is
supported on the fact x, or the fact x supports the condition r.

Proposition 3. For fact set T on S, ∀x1, x2 ∈ T and x1 ⊂ x2, r(x1) → r(x2) .

Definition 5. For fact set T on S and condition r, if r(x) is true, the fact

x ∈ T is the evidence to r.

Definition 6. For fact set T on S, ∃x∗ ∈ T and such that x∗ is the evidence to

the condition r, if ∄x ⊂ x∗ and such that x is the evidence to r, then the x∗ is

the minimum evidence to r.

3.3 Privilege

Definition 7. For a collection of functions F , a collection of entities E and a

collection of conditions R, the privilege is (F/E,R).

For convenience, we define, (∅, r) = ∅.

Definition 8. The privilege space P is a collection of subsets of P with the

following properties:

1. (Privilege Mergence) For all privilege, u, v ∈ P, u = (f1/E1, R1), and v =
(f2/E2, R2),

u ∗ v = {(f1 ∗ f2/(E1 ∩ E2), R1 ∩R2)} ;

2. (Privilege Composition) For all privilege, u, v ∈ P, u = (f1/E1, R1), and
v = (f2/E2, R2),

u+ v = {(f1/E1, R1) ∪ (f2/E2, R2)} ;

3. For all privilege, u, v ∈ P, u ∗ v = v ∗ u;
4. For all privilege, u, v ∈ P, u+ v = v + u;
5. For all privilege, u, v, w ∈ P, (u ∗ v) ∗ w = v ∗ (u ∗ w);
6. For all privilege, u, v, w ∈ P, (u+ v) + w = v + (u+ w);
7. For all privilege, u, v, w ∈ P, u ∗ (v + w) = u ∗ v + u ∗ w.

4 Normal Form of Privilege

Definition 9. The employment arrangement M is a finite collection of employ-

ment and such that ∀m,n ∈ M, m 6= n ∧m ∗ n = ∅.

Definition 10. To employment arrangement M , the normal form of privilege

p is

nfmM (p) =

M
∑

i

mi =

M
∑

i

(fi/Ei, ci) ,

where fi/Ei is an element of M and ci is a condition.

Proposition 4. To employment arrangement M , every privilege is structurally

equal to its normal form.

Definition 11. To employment arrangement M , the privileges are structural

equivalence, if and only if they have the same normal form,

u
M
= v ⇐⇒ nfmM (u) = nfmM (v) .

When one condition has an evidence, these privileges that involve the condi-
tion are pulsed. Corresponding to normal form of privilege, there is the pulsed
form.

Definition 12. To employment arrangement M , on the fact t ∈ T , the pulsed

form of privilege p is

pfmM (p, t) =

M
∑

i

(fi/Ei, ci(t)) ,

where fi/Ei is an element of M and ci is a condition.

We have a sequence of fact Q = (t0, t1, . . . , tj, . . .). We get the sequence of
pulse to privilege t,

pfmM (p,Q) = (pfmM (p, t0), pfmM (p, t1), . . . , pfmM (p, tj), . . .) .

This sequence of pulsed form describes the trace of process about privilege p. The
trace matrix (ci,j) of privilege p is made from this sequence, where ci,j ∈ {1, 0} .

t0 t1 . . . tj . . .
f0/E0 c0,0 c0,1 . . . c0,j . . .
f1/E1 c1,0 c1,1 . . . c1,j . . .

...
...

...
. . .

...
. . .

fi/Ei ci,0 ci,1 . . . ci,j . . .
...

...
...

. . .
...

. . .

fn/En cn,0 cn,1 . . . cn,j . . .

For example, we have two operations (privileges) op1 and op2, and three
people (privileges) u1, u2 and u3. We want to know what will happen at time
(facts) t0 and t1. So we define a gauging privilege, g = (u1+u2+u3)∗(op1+op2).
And the sequence of pulse is (pfmM (g, t0), pfmM (g, t1)).

Definition 13. To employment arrangement M , privileges, u and v, are con-

gruent on fact t ∈ T , a
t
∼ b, if and only if u and v have the same pulsed form.

Definition 14. To employment arrangement M , on fact t ∈ T , privilege p is

compliant to privilege q, p
t
∗∼ q, if and only if (p ∗ q)

t
∼ q.

The congruence ∼ and the compliance ∗∼ are a function P ×P ×T → {1, 0}.
So they can be a condition in one high-order privilege. For a compliance example,
we have the privileges, g, p and q, and such that g = [p ∗∼ q]. We call that the
privilege g is a high-order privilege of p and q.

5 Discussion

In general, the role-based models, such as RBAC reference model [11, 5], AR-
BAC [12], and T-RBAC [13], have constructs, such as, USERS, ROLES, OPS
(operations), and OBJS (objects), and relations, such as UA(user-to-role assign-
ment), PA(permission-to-role assignment), PRMS (set of permission), and RH

(role inheritance relation). These constructs are able to be defined with privilege
and these relation with privileges. And these privileges are glued by privilege’s
operations, such as privilege mergence and privilege composition.

The following code is a demonstration written in PAL(Privilege Analysis
Language) that is a reference implementation based on privilege calculus. With
this demonstration we discuss cases about privilege representation.

namespace "example" {

let doc1 is TechDoc

reader := (read + list)/TechDoc

manager := (reader + write + remove)/TechDoc

bob := reader + write/TechDoc

may := manager

phone := read + list

officepc := read + list + write + remove

}

Shown by the above code, we have four operations, read, list, write, and
remove, two roles, reader and manager, two users, bob and may, and two termi-
nals, officepc and phone. The statement “let” declares that doc1 is a document
in the category TechDoc. The role reader can read any documents in TechDoc
and list entries of those, and the role manager can write and remove any one
in TechDoc and manager inherits all of reader’s privileges that are limited in
TechDoc. User bob plays the role reader and User may has the role manager.
The mobile phone, a terminal device, has a limitation to access, read and list.

So far, we have defined these privileges: read, list, write, remove, reader,
manager, bob, may, officepc, phone, doc1, and TechDoc.

While user bob has logged in system at his officepc, and the system creates
his session, session1 = bob ∗ officepc. In session1, bob is able to read, list and
write any one in TechDoc.

Later bob uses his personal phone to navigate the system, the session2 is
created automatically, session2 = bob ∗ phone . The session2’s privileges are
different from session1’s. We set an employment arrangement, M = read +

list+ write + remove. Thus,

session1

M
= bob ∗ officepc

M
= (reader + write/T echDoc) ∗ (read + list+ write + remove)

M
= read/TechDoc+ list/T echDoc+ write/T echDoc ,

session2

M
= bob ∗ phone

M
= ((read + list)/TechDoc+ write) ∗ (read+ list)

M
= read/TechDoc+ list/T echDoc .

With the above computation, we know the session2 lacks the employment ‘write’
on TechDoc. It is interesting that the session in system can be created as a
privilege and these constructs, such as session, user, role, permission, group,
location etc., could be represented by privilege.

We continue the story. User bob wants to read the document doc1 that is a
TechDoc. The guard readguard to the action read is

readguard = read ∗ [session1 ∗∼ (read/doc1)] .

The readguard is the high-order privilege of session1 and read/doc1. The pulse
of readguard depends on the session1’s compliance to read/doc1.

User may has logged in, and her session is session3. She wants to write the
document doc1. The regulation does concern not only may’s privilege but also
the doc1’s. So the privilege doc1 is redefined, doc1 = readable+writable. Because
the doc1’s “writable” action and the may’s “write” action are complementary
in this synchronized interaction, writeguard and writableguard are defined,

writegurad = write ∗ [session3 ∗∼(write/doc1)] ,

writableguard = writable ∗ [doc1 ∗∼(writable)] .

Thus, we have the interaction guard interactionguard,

interactionguard = writeguard+ writableguard .

Finally, the session3’s compliance and the doc1’s compliance consistently make
the pulse of interactionguard.

6 Conclusion

Separation of duty is critical not only in security control but also in modeling and
monitoring of business logic. For improving reconfigurability of representation
of duty, we propose privilege calculus. With the help of privilege’s normal form
and pulsed form, we are able to analyze the structure of privilege and to monitor
the change in process. We also have demonstrated that the access control model
based on privilege calculus is compatible with RBAC, ACL.

So far, we have only begun to explore the computation of privilege and rep-
resentation of regulation in access control logic. But we have little knowledge
about the relationship among regulation, business process and business rule. On
all accounts, we hope that the paper will throw some light on the knowledge
representation in separation of duty domain to facilitate the analysis of business
rules and business processes.

References

1. Simon, R., Zurko, M.: Separation of duty in role-based environments. In: Proceed-
ings of the 10th Computer Security Foundations Workshop, pp. 183–194. IEEE
Press, New York (1997)

2. Gligor, V., Gavrila, S., Ferraiolo, D.: On the formal definition of separation-of-
duty policies and theircomposition. In: Proceedings of Symposium on Security and
Privacy, pp. 172–183. IEEE Press, New York (1998)

3. Sandhu, R.: Future Directions in Role-Based Access Control Models. In: Gorodet-
ski, V.I., Skormin, V.A., Popyack, L.J. (eds.) Information Assurance in Computer
Networks: Methods, Models, and Architectures for Network Security, International
Workshop 2001. LNCS, vol. 2052, pp. 22–26. Springer, Heidelberg (2001)

4. Sandhu, R.: Role activation hierarchies. In: Proceedings of the third ACM work-
shop on role-based access control, pp.33–40. ACM Press, New York (1998)

5. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Transactions on Information
and System Security 4(3), 224–274 (2001)

6. Barka, E., Sandhu, R.: Framework for role-based delegation models. In: Proceed-
ings of the 16th Annual Computer Security Applications Conference, pp. 168–176.
IEEE Press, New York (2000)

7. Jaeger, T.: On the increasing importance of constraints. In: Proceedings of the
fourth ACM workshop on role-based access control, pp. 33–42. ACM Press, New
York (1999)

8. Schaad, A.: Detecting Conflicts in a Role-based Delegation Model. In: Proceedings
of the 17th Annual Computer Security Applications Conference, pp. 117–126. IEEE
Press, New York (2001)

9. Jaeger, T., Sailer, R., Zhang, X.: Resolving constraint conflicts. In: Proceedings of
the 9th ACM symposium on Access control models and technologies, pp. 105–114.
ACM Press, New York (2004)

10. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

11. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-Based Access Control
Models. Computer 29(2), 38–47 (1996)

12. Sandhu, R., Bhamidipati, V., Munawer, Q.: The ARBAC97 model for role-based
administration of roles. ACM Transactions on Information and System Security
2(1), 105–135 (1999)

13. Oh, S., Park, S.: Task-role-based access control model. Information Systems 28(6),
533–562 (2003)

