Skip to main content

Mixture Model Estimation with Soft Labels

  • Conference paper
Soft Methods for Handling Variability and Imprecision

Part of the book series: Advances in Soft Computing ((AINSC,volume 48))

Abstract

This paper addresses classification problems in which the class membership of training data is only partially known. Each learning sample is assumed to consist in a feature vector and an imprecise and/or uncertain “soft” label m i defined as a Dempster-Shafer basic belief assignment over the set of classes. This framework thus generalizes many kinds of learning problems including supervised, unsupervised and semi-supervised learning. Here, it is assumed that the feature vectors are generated from a mixture model. Using the General Bayesian Theorem, we derive a criterion generalizing the likelihood function. A variant of the EM algorithm dedicated to the optimization of this criterion is proposed, allowing us to compute estimates of model parameters. Experimental results demonstrate the ability of this approach to exploit partial information about class labels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ambroise, C., Govaert, G.: EM algorithm for partially known labels. In: Proc. of IFCS 2000 (Namur, Belgium), pp. 161–166. Springer, Heidelberg (2000)

    Google Scholar 

  2. Cobb, B.R., Shenoy, P.P.: On the plausibility transformation method for translating belief function models to probability models. Internat. J. Approx. Reason 41(3), 314–330 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statist. 38, 325–339 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B. Stat. Methodol. 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  5. Denœux, T.: A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Systems Man Cybernet 25(05), 804–813 (1995)

    Article  Google Scholar 

  6. Denœux, T., Zouhal, L.M.: Handling possibilistic labels in pattern classification using evidential reasoning. Fuzzy Sets Syst. 122(3), 47–62 (2001)

    Google Scholar 

  7. Dubois, D., Prade, H.: On the unicity of Dempster’s rule of combination. Int. J. Intell. Syst. 1, 133–142 (1986)

    Article  MATH  Google Scholar 

  8. Elouedi, Z., Mellouli, K., Smets, P.: Belief decision trees: Theoretical foundations. Internat. J. Approx. Reason 28, 91–124 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grandvallet, Y.: Logistic regression for partial labels. In: Proc. of IPMU 2002 (Annecy, France), vol. III, pp. 1935–1941 (2002)

    Google Scholar 

  10. Hosmer, D.W.: A comparison of iterative maximum likelihood estimates of the parameters of a mixture of two normal distributions under three different types of sample. Biometrics 29, 761–770 (1973)

    Article  Google Scholar 

  11. Hüllermeier, E., Beringer, J.: Learning from ambiguously labeled examples. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds.) IDA 2005. LNCS, vol. 3646. Springer, Heidelberg (2005)

    Google Scholar 

  12. Jraidi, I., Elouedi, Z.: Belief classification approach based on generalized credal EM. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 524–535. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Monney, P.-A.: A Mathematical Theory of Arguments for Statistical Evidence. Contributions to Statistics. Physica-Verlag, Heidelberg (2003)

    MATH  Google Scholar 

  14. Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  15. Shenoy, P.P., Giang, P.H.: Decision making on the sole basis of statistical likelihood. Artificial Intelligent 165(2), 137–163 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Smets, P.: Possibilistic inference from statistical data. In: Proc. of WCMSM 1982 (Las-Palmas, Spain), pp. 611–613 (1982)

    Google Scholar 

  17. Smets, P.: Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem. Internat. J. Approx. Reason 9, 1–35 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Smets, P.: Quantifying beliefs by belief functions: An axiomatic justification. In: Proc. of IJCAI 1993 (Chambéry), vol. 1, pp. 598–603 (1993)

    Google Scholar 

  19. Smets, P.: Belief functions on real numbers. Internat. J. Approx. Reason 40(3), 181–223 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Smets, P., Kennes, R.: The Transferable Belief Model. Artificial Intelligence 66, 191–243 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Vannoorenberghe, P., Smets, P.: Partially supervised learning by a credal EM approach. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 956–967. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Côme, E., Oukhellou, L., Denœux, T., Aknin, P. (2008). Mixture Model Estimation with Soft Labels. In: Dubois, D., Lubiano, M.A., Prade, H., Gil, M.Á., Grzegorzewski, P., Hryniewicz, O. (eds) Soft Methods for Handling Variability and Imprecision. Advances in Soft Computing, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85027-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85027-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85026-7

  • Online ISBN: 978-3-540-85027-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics