Skip to main content

The F. Riesz Representation Theorem and Finite Additivity

  • Conference paper

Part of the book series: Advances in Soft Computing ((AINSC,volume 48))

Abstract

A positive and normalised real linear functional on the set of bounded continuous functions can be characterised as the integral of a σ-additive probability measure, by the F. Riesz Representation Theorem. In this paper, we look at the finitely additive extensions of such a functional to the set of all bounded random variables, and prove that they are determined by Riesz’ extension to lower semi-continuous functions. In doing so, we establish links with Daniell’s approach to integration, Walley’s theory of coherent lower previsions, and de Finetti’s Representation Theorem for exchangeable random variables.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. John Wiley & Sons, Chichester (1994)

    MATH  Google Scholar 

  2. Bhaskara Rao, K.P.S., Bhaskara Rao, M.: Theory of Charges. Academic Press, London (1983)

    MATH  Google Scholar 

  3. Choquet, G.: Theory of capacities. Ann. Inst. Fourier (Grenoble) 5, 131–295 (1953-1954)

    MathSciNet  Google Scholar 

  4. Daniell, P.J.: A general form of integral. Ann. of Math (2) 19(4), 279–294 (1918)

    Article  MathSciNet  Google Scholar 

  5. De Cooman, G., Miranda, E., Quaeghebeur, E.: Exchangeable lower previsions (submitted for publication, 2008) (ArXiv:0801.1265v1)

    Google Scholar 

  6. De Cooman, G., Troffaes, M.C.M., Miranda, E.: n-Monotone exact functionals (submitted for publication, 2006) (ArXiv: 0801.1962v1)

    Google Scholar 

  7. De Finetti, B.: La prévision: ses lois logiques, ses sources subjectives. Annales de l’Institut Henri Poincaré 7, 1–68 (1937); (English translation in [16])

    MATH  Google Scholar 

  8. De Finetti, B.: Teoria delle Probabilità. Einaudi, Turin (1970)

    Google Scholar 

  9. De Finetti, B.: Theory of Probability: A Critical Introductory Treatment. John Wiley & Sons, Chichester (1974); (English translation of [8], two volumes)

    MATH  Google Scholar 

  10. Denneberg, D.: Non-Additive Measure and Integral. Theory and Decision Library B: Mathematical and Statistical Methods, vol. 27. Kluwer Academic Publishers Group, Dordrecht (1994)

    Google Scholar 

  11. Edwards, R.E. (1995) Functional Analysis: Theory and Applications. Dover Publications, New York, first published by Holt, Rinehart and Winston, New York (1965)

    Google Scholar 

  12. Gärdenfors, P., Sahlin, N.E.: Decision, Probability, and Utility. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  13. Heath, D.C., Sudderth, W.D.: De Finetti’s theorem on exchangeable variables. Amer. Statist. 30, 188–189 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  15. Kallenberg, O.: Probabilistic Symmetries and Invariance Principles. Springer, New York (2005)

    MATH  Google Scholar 

  16. Kyburg Jr, H.E., Smokler, H.E. (eds.): Studies in Subjective Probability (2nd edn. (with new material) in 1980). Wiley, Chichester (1964)

    MATH  Google Scholar 

  17. Ramsey, F.P.: Truth and probability (1926). In: Braithwaite, R.B. (ed.) The Foundations of Mathematics and other Logical Essays, Kegan, Paul, Trench, ch. VII, pp. 156–198. Trubner & Co., London (1931); (reprinted in [16] and [12])

    Google Scholar 

  18. Schechter, E.: Handbook of Analysis and Its Foundations. Academic Press, San Diego (1997)

    MATH  Google Scholar 

  19. Smith, C.A.B.: Consistency in statistical inference and decision. J. Roy Statist. Soc. Ser. A. 23, 1–37 (1961)

    MATH  Google Scholar 

  20. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)

    MATH  Google Scholar 

  21. Williams, P.M.: Notes on Conditional Previsions. Tech. Report. School of Mathematical and Physical Science, University of Sussex, UK (1975)

    Google Scholar 

  22. Williams, P.M.: Indeterminate probabilities. In: Przelecki, M., Szaniawski, K., Wojcicki, R. (eds.) Formal Methods in the Methodology of Empirical Sciences, Reidel, Dordrecht, pp. 229–246 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Cooman, G., Miranda, E. (2008). The F. Riesz Representation Theorem and Finite Additivity. In: Dubois, D., Lubiano, M.A., Prade, H., Gil, M.Á., Grzegorzewski, P., Hryniewicz, O. (eds) Soft Methods for Handling Variability and Imprecision. Advances in Soft Computing, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85027-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85027-4_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85026-7

  • Online ISBN: 978-3-540-85027-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics