Abstract
A positive and normalised real linear functional on the set of bounded continuous functions can be characterised as the integral of a σ-additive probability measure, by the F. Riesz Representation Theorem. In this paper, we look at the finitely additive extensions of such a functional to the set of all bounded random variables, and prove that they are determined by Riesz’ extension to lower semi-continuous functions. In doing so, we establish links with Daniell’s approach to integration, Walley’s theory of coherent lower previsions, and de Finetti’s Representation Theorem for exchangeable random variables.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. John Wiley & Sons, Chichester (1994)
Bhaskara Rao, K.P.S., Bhaskara Rao, M.: Theory of Charges. Academic Press, London (1983)
Choquet, G.: Theory of capacities. Ann. Inst. Fourier (Grenoble) 5, 131–295 (1953-1954)
Daniell, P.J.: A general form of integral. Ann. of Math (2) 19(4), 279–294 (1918)
De Cooman, G., Miranda, E., Quaeghebeur, E.: Exchangeable lower previsions (submitted for publication, 2008) (ArXiv:0801.1265v1)
De Cooman, G., Troffaes, M.C.M., Miranda, E.: n-Monotone exact functionals (submitted for publication, 2006) (ArXiv: 0801.1962v1)
De Finetti, B.: La prévision: ses lois logiques, ses sources subjectives. Annales de l’Institut Henri Poincaré 7, 1–68 (1937); (English translation in [16])
De Finetti, B.: Teoria delle Probabilità. Einaudi, Turin (1970)
De Finetti, B.: Theory of Probability: A Critical Introductory Treatment. John Wiley & Sons, Chichester (1974); (English translation of [8], two volumes)
Denneberg, D.: Non-Additive Measure and Integral. Theory and Decision Library B: Mathematical and Statistical Methods, vol. 27. Kluwer Academic Publishers Group, Dordrecht (1994)
Edwards, R.E. (1995) Functional Analysis: Theory and Applications. Dover Publications, New York, first published by Holt, Rinehart and Winston, New York (1965)
Gärdenfors, P., Sahlin, N.E.: Decision, Probability, and Utility. Cambridge University Press, Cambridge (1988)
Heath, D.C., Sudderth, W.D.: De Finetti’s theorem on exchangeable variables. Amer. Statist. 30, 188–189 (1976)
Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, New York (2002)
Kallenberg, O.: Probabilistic Symmetries and Invariance Principles. Springer, New York (2005)
Kyburg Jr, H.E., Smokler, H.E. (eds.): Studies in Subjective Probability (2nd edn. (with new material) in 1980). Wiley, Chichester (1964)
Ramsey, F.P.: Truth and probability (1926). In: Braithwaite, R.B. (ed.) The Foundations of Mathematics and other Logical Essays, Kegan, Paul, Trench, ch. VII, pp. 156–198. Trubner & Co., London (1931); (reprinted in [16] and [12])
Schechter, E.: Handbook of Analysis and Its Foundations. Academic Press, San Diego (1997)
Smith, C.A.B.: Consistency in statistical inference and decision. J. Roy Statist. Soc. Ser. A. 23, 1–37 (1961)
Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)
Williams, P.M.: Notes on Conditional Previsions. Tech. Report. School of Mathematical and Physical Science, University of Sussex, UK (1975)
Williams, P.M.: Indeterminate probabilities. In: Przelecki, M., Szaniawski, K., Wojcicki, R. (eds.) Formal Methods in the Methodology of Empirical Sciences, Reidel, Dordrecht, pp. 229–246 (1976)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Cooman, G., Miranda, E. (2008). The F. Riesz Representation Theorem and Finite Additivity. In: Dubois, D., Lubiano, M.A., Prade, H., Gil, M.Á., Grzegorzewski, P., Hryniewicz, O. (eds) Soft Methods for Handling Variability and Imprecision. Advances in Soft Computing, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85027-4_30
Download citation
DOI: https://doi.org/10.1007/978-3-540-85027-4_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85026-7
Online ISBN: 978-3-540-85027-4
eBook Packages: EngineeringEngineering (R0)