Abstract
Recently, clustering algorithms based on rough set theory have gained increasing attention. For example, Lingras et al. introduced a rough k-means that assigns objects to lower and upper approximations of clusters. The objects in the lower approximation surely belong to a cluster while the membership of the objects in an upper approximation is uncertain. Therefore, the core cluster, defined by the objects in the lower approximation is surrounded by a buffer or boundary set with objects with unclear membership status. In this paper, we introduce an evolutionary rough k-medoid clustering algorithm. Evolutionary rough k-medoid clustering belongs to the families of Lingras’ rough k-means and classic k-medoids algorithms. We apply the evolutionary rough k-medoids to synthetic as well as to real data sets and compare the results to Lingras’ rough k-means. We also introduce a rough version of the Davies-Bouldin-Index as a cluster validity index for the family of rough clustering algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bezdek, J.: Pattern Recognition with Fuzzy Objective Algorithms. Plenum Press, New York (1981)
Bezdek, J., Pal, N.: Some new indexes of cluster validity. IEEE Transactions on Systems, Man, and Cybernetics 28, 301–315 (1998)
Darken, C., Moody, J.: Fast adaptive k-means clustering: Some empirical results. In: Proceeding 2nd International Joint Conference on Neural Networks, pp. 233–238 (1990)
Davies, D., Bouldin, D.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1, 224–227 (1979)
de Wilde, P.: Neural Network Models. Theory and Projects, 2nd edn. Springer, Berlin (1997)
Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional, Boston (1989)
Hartigan, J., Wong, M.: A k-means clustering algorithm. Applied Statistics 28, 100–108 (1979)
Kaufman, J., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley, New York (1990)
Krishnapuram, R., Joshi, A., Yi, L.: A fuzzy relative of the k-medoids algorithm with application to web document and snippet clustering. In: IEEE International Fuzzy Systems Conference, Seoul, Korea, pp. 1281–1286 (1999)
Laplace, P.: Philosophical Essay on Probabilities (Translated from the fifth French edition of 1825). Springer, Berlin (1998)
Lingras, P.: Applications of rough set based k-means, Kohonen SOM, GA clustering. Transactions on Rough Sets VII, 120–139 (2007)
Lingras, P., West, C.: Interval set clustering of web users with rough k-means. Technical Report 2002-002, Department of Mathematics and Computer Science, St. Mary’s University, Halifax, Canada (2002)
Lingras, P., West, C.: Interval set clustering of web users with rough k-means. Journal of Intelligent Information Systems 23, 5–16 (2004)
Lingras, P., Yan, R., West, C.: Comparison of conventional and rough k-means clustering. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 130–137. Springer, Heidelberg (2003)
Mirkin, B.: Mathematical Classification and Clustering. Kluwer Academic Publishers, Boston (1996)
Mitra, S.: An evolutionary rough partitive clustering. Pattern Recognition Letters 25, 1439–1449 (2004)
Mitra, S., Banka, H., Pedrycz, W.: Rough-fuzzy collaborative clustering. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 36, 795–805 (2006)
Moody, J., Darken, C.: Fast learning in networks of locally-tuned processing units. Neural Computation 1, 281–294 (1989)
Pawlak, Z.: Classification of objects by means of attributes. Report 429, Institute for Computer Science, Polish Academy of Sciences (1981)
Pawlak, Z.: Rough sets. Report 431, Institute for Computer Science, Polish Academy of Sciences (1981)
Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 11, 341–356 (1982)
Pawlak, Z.: Rough sets and fuzzy sets. short communication. Fuzzy Sets and Systems 17, 99–102 (1985)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1992)
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177, 3–27 (2007)
Peters, G.: Outliers in rough k-means clustering. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 702–707. Springer, Berlin (2005)
Peters, G.: Some refinements of rough k-means. Pattern Recognition 39, 1481–1491 (2006)
Peters, G., Lampart, M.: A partitive rough clustering algorithm. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 657–666. Springer, Heidelberg (2006)
Peters, J., Borkowski, M.: K-means indiscernibility relation over pixels. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 580–585. Springer, Heidelberg (2004)
Polkowski, L.: Rough Sets. Physica-Verlag, Heidelberg (2003)
Yao, Y.: Two views of the theory of rough sets in finite universes. International Journal of Approximate Reasoning 15, 291–317 (1996)
Yao, Y., Li, X., Lin, T., Liu, Q.: Representation and classification of rough set models. In: Proceedings Third International Workshop on Rough Sets and Soft Computing, San Jose, CA, USA, pp. 630–637 (1994)
Zimmermann, H.: Fuzzy Set Theory and its Applications, 4th edn. Kluwer Academic Publishers, Boston (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Peters, G., Lampart, M., Weber, R. (2008). Evolutionary Rough k-Medoid Clustering. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets VIII. Lecture Notes in Computer Science, vol 5084. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85064-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-85064-9_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85063-2
Online ISBN: 978-3-540-85064-9
eBook Packages: Computer ScienceComputer Science (R0)