Abstract
For completely specified decision tables lower and upper approximations are unique, the lower approximation is the largest definable set contained in the approximated set X and the upper approximation of X is the smallest definable set containing X. For incomplete decision tables the existing definitions of upper approximations provide sets that, in general, are not minimal definable sets. The same is true for generalizations of approximations based on relations that are not equivalence relations. In this paper we introduce two definitions of approximations, local and global, such that the corresponding upper approximations are minimal. Local approximations are more precise than global approximations. Global lower approximations may be determined by a polynomial algorithm. However, algorithms to find both local approximations and global upper approximations are NP-hard. Additionally, we show that for decision tables with all missing attribute values being lost, local and global approximations are equal to one another and that they are unique.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Greco, S., Matarazzo, B., Slowinski, R.: Dealing with missing data in rough set analysis of multi-attribute and multi-criteria decision problems. In: Decision Making: Recent developments and Worldwide Applications, pp. 295–316. Kluwer Academic Publishers, Dordrecht (2000)
Grzymala-Busse, J.W.: On the unknown attribute values in learning from examples. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1991. LNCS, vol. 542, pp. 368–377. Springer, Heidelberg (1991)
Grzymala-Busse, J.W.: Rough set strategies to data with missing attribute values. In: Workshop Notes, Foundations and New Directions of Data Mining, the 3-rd International Conference on Data Mining, Melbourne, FL, USA, November 19–22, pp. 56–63 (2003)
Grzymala-Busse, J.W.: Data with missing attribute values: Generalization of idiscernibility relation and rule induction. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 78–95. Springer, Heidelberg (2004)
Grzymala-Busse, J.W.: Characteristic relations for incomplete data: A generalization of the indiscernibility relation. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 244–253. Springer, Heidelberg (2004)
Grzymala-Busse, J.W.: Incomplete data and generalization of indiscernibility relation, definability, and approximations. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 244–253. Springer, Heidelberg (2005)
Grzymala-Busse, J.W., Rzasa, W.: Local and global approximations for incomplete data. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 244–253. Springer, Heidelberg (2006)
Grzymala-Busse, J.W., Wang, A.Y.: Modified algorithms LEM1 and LEM2 for rule induction from data with missing attribute values. In: Proc. of the Fifth International Workshop on Rough Sets and Soft Computing (RSSC 1997) at the Third Joint Conference on Information Sciences (JCIS 1997), Research Triangle Park, NC, March 2–5, 1997, vol. 5, pp. 69–72 (1997)
Hong, T.P., Tseng, L.H., Chien, B.C.: Learning cevrage rules from incomplete data based on rough sets. In: Proc. of the IEEE International Conference on Systems, Man and Cybernetics, Hague, the Netherlands, October 10–13, 2004, pp. 3226–3231 (2004)
Kryszkiewicz, M.: Rough set approach to incomplete information systems. In: Proceedings of the Second Annual Joint Conference on Information Sciences, Wrightsville Beach, NC, September 28–October 1, 1995, pp. 194–197 (1995)
Kryszkiewicz, M.: Rules in incomplete information systems. Information Sciences 113, 271–292 (1999)
Lin, T.Y.: Neighborhood systems and approximation in database and knowledge base systems. In: Fourth International Symposium on Methodologies of Intelligent Systems (Poster Sessions), Charlotte, North Carolina, October 12–14, pp. 75–86 (1989)
Lin, T.Y.: Chinese Wall security policy—An aggressive model. In: Proceedings of the Fifth Aerospace Computer Security Application Conference, Tucson, Arizona, December 4–8, 1989, vol. 8, pp. 286–293 (1989)
Lin, T.Y.: Topological and fuzzy rough sets. In: Slowinski, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, pp. 287–304. Kluwer Academic Publishers, Dordrecht (1992)
Nakata, M., Sakai, H.: Rough sets handling missing values probabilistically interpreted. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 325–334. Springer, Heidelberg (2005)
Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)
Pawlak, Z.: Rough Sets. In: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Dordrecht (1991)
Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Slowinski, R. (ed.) Handbook of Applications and Advances of the Rough Sets Theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)
Slowinski, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Transactions on Knowledge and Data Engineering 12, 331–336 (2000)
Stefanowski, J.: Algorithms of Decision Rule Induction in Data Mining. Poznan University of Technology Press, Poznan (2001)
Stefanowski, J., Tsoukias, A.: On the extension of rough sets under incomplete information. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 73–81. Springer, Heidelberg (1999)
Stefanowski, J., Tsoukias, A.: Incomplete information tables and rough classification. Computational Intelligence 17, 545–566 (2001)
Wang, G.: Extension of rough set under incomplete information systems. In: Proc. of the IEEE International Conference on Fuzzy Systems (FUZZ_IEEE 2002), Honolulu, HI, May 12–17, 2002, vol. 2, pp. 1098–1103 (2002)
Yao, Y.Y.: Two views of the theory of rough sets in finite universes. International J. of Approximate Reasoning 15, 291–317 (1996)
Yao, Y.Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences 111, 239–259 (1998)
Yao, Y.Y.: On the generalizing rough set theory. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 44–51. Springer, Heidelberg (2003)
Yao, Y.Y., Lin, T.Y.: Generalization of rough sets using modal logics. Intelligent Automation and Soft Computing 2, 103–119 (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Grzymała-Busse, J.W., Rza̧sa, W. (2008). Local and Global Approximations for Incomplete Data. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets VIII. Lecture Notes in Computer Science, vol 5084. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85064-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-85064-9_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85063-2
Online ISBN: 978-3-540-85064-9
eBook Packages: Computer ScienceComputer Science (R0)