Skip to main content

Studying the Effects of Dual Coding on the Adaptation of Representation for Linkage in Evolutionary Algorithms

  • Chapter
Linkage in Evolutionary Computation

Part of the book series: Studies in Computational Intelligence ((SCI,volume 157))

Summary

For successful and efficient use of GAs, it is not enough to simply apply simple GAs (SGAs). In addition, it is necessary to find a proper representation for the problem and to integrate linkage information about the problem structure. Similarly, it is important to develop appropriate search operators that fit well to the properties of the genotype encoding and that can learn linkage information to assisst in creating and not in destroying the building blocks. Besides, the representation must at least be able to encode all possible solutions of an optimization problem, and genetic operators such as crossover and mutation should be applicable to it. In this chapter, sequential alternation strategies between two coding schemes are formulated in the framework of dynamic change of genotype encoding in GAs for function optimization. Likewise, new variants of GAs for difficult optimization problems are developed using a parallel implementation of GAs and evolving a dynamic exchange of individual representation in the context of dual coding concepts. Numerical experiments show that the evolved proposals significantly outperform a SGA with static single coding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1975)

    Google Scholar 

  2. Gregory, J.E., Rawlins.: Foundations of Genetic Algorithms - 1. Morgan Kaufman Publishers, San Mateo (1991)

    Google Scholar 

  3. Rothlauf, F., Goldberg, D.E.: Representations for Genetic and Evolutionary Algorithms. Springer, New York (2002)

    MATH  Google Scholar 

  4. Digalakis, J.G., Margaritis, K.G.: An Experimental Study of Benchmarking Functions for Genetic Algorithms (2002)

    Google Scholar 

  5. Crutchfield, J.P., Schuster, P.: Evolutionary Dynamics, Exploring the Interplay of Selection, Accident, Neutrality and Function. Oxford University Press, New York (2003)

    MATH  Google Scholar 

  6. Caruana, Rich, Schaffer, David, J.: Representation and Hidden Bias: Gray vs. Binary Coding for Genetic Algorithms. In: Proceedings of the Fifth International Conference on Machine Learning. Morgan Kaufmann Publishers, San Francisco (1988)

    Google Scholar 

  7. Mathias, E., Whitley, D.: Transforming the Search Space with Gray Coding. In: Proceedings of the 1994 International Conference on Evolutionary Computation (1994)

    Google Scholar 

  8. Whitley, D.: A Free Lunch Proof for Gray versus Binary Encodings. In: Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann Publishers, Orlando (1999)

    Google Scholar 

  9. Whitley, D., Rana, S., Heckendorn, R.B.: Representation Issues in Neighborhood Search and Evolutionary Algorithms. In: Genetic Algorithms in Engineering and Computer Science (1997)

    Google Scholar 

  10. Barbulescu, L., Watson, J.-P., Whitley, D.: Dynamic Representations and Escaping Local Optima: Improving Genetic Algorithms and Local Search. In: AAAI/IAAI (2000)

    Google Scholar 

  11. Toussaint, M.: Compact Representations as a Search Strategy: Compression EDAs. Elsevier Science Publishers Ltd, Essex (2006)

    Google Scholar 

  12. Rothlauf, F., Goldberg, D.E., Heinzl, A.: Network Random Keys: a Tree Representations Scheme for Genetic and Evolutionary Algorithms. MIT Press, Cambridge (2002)

    Google Scholar 

  13. Liepins, G., Vose, M.: Representations Issues in Genetic Algorithms, Experimental and Theoretical Artificial Intelligence Journal (1990)

    Google Scholar 

  14. Eshelman, L.J.: The CHC Adapative Search Algorithm: How to Have Safe Search when Engaging in Non-Traditional Genetic Recombination. In: Foundations of Genetic Algorithms - 1. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  15. De Jong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph.D. dissertation, University of Michigan (1975)

    Google Scholar 

  16. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  17. Trkmen, B.S., Turan, O.: An Application Study of Multi-Agent Systems in Multi-criterion Ship Design Optimisation. In: Proceedings of the Third International EuroConference on Computer and IT Applications in the Maritime Industries (COMPIT 2004), Siguenza, Madrid (2004)

    Google Scholar 

  18. Whitley, D., Rana. S.: Representation, Search and Genetic Algorithm. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI 1997). AAAI Press/MIT Press (1997)

    Google Scholar 

  19. Eshelman, L.J., Mathias, K.E., Schaffer, J.D.: Convergence Controlled Variation. In: Foundations of Genetic Algorithms - 4. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  20. Tsutsui, S., Fujimoto, Y.: Forking Genetic Algorithm with Blocking and Shrinking Modes. In: Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  21. Ackley, D.: An Empirical Study of Bit Vector Function Optimization’, Genetic Algorithms and Simulated Annealing (1987)

    Google Scholar 

  22. Goldberg, D.E.: Genetic Algorithms and Walsh Functions: Part I, a Gentle Introduction. Complex Systems (1989)

    Google Scholar 

  23. Goldberg, D.E.: Genetic Algorithms and Walsh Functions: Part II, Deception and its Analysis. Complex Systems (1989)

    Google Scholar 

  24. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Co, Reading (1989)

    MATH  Google Scholar 

  25. Baluja, S.: Population-based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning, Tech. Report No. CMU-CS-94-163, Pittsburgh, PA: Carnegie Mellon University (1994)

    Google Scholar 

  26. Baluja, S., Davies, S.: Using Optimal Dependency-trees for Combinatorial Optimization: Learning the Structure of the Search Space. In: Proceedings of the Fourteenth International Conference on Machine Learning (1997)

    Google Scholar 

  27. Muhlenbein, H., Paa, G.: From Recombination of Genes to the Estimation of Distributions I. Binary Parameters. In: Proceedings of the Fourth International Conference on Parallel Problem Solving from Nature (1996)

    Google Scholar 

  28. Muhlenbein, H.: The Equation for Response to Selection and its Use for Prediction. Evolutionary Computation Journal (1997)

    Google Scholar 

  29. Muhlenbein, H., Mahnig, T.: Convergence Theory and Applications of the Factorized Distribution Algorithm. Computing and Information Technology Journal (1999)

    Google Scholar 

  30. Muhlenbein, H., Mahnig, T.: A Scalable Evolutionary Algorithm for the Optimization of Additively Decomposed Functions. Evolutionary Computation Journal (1999)

    Google Scholar 

  31. Muhlenbein, H., Mahnig, T., Ochoa, A.: Schemata, Distributions and Graphical Models in Evolutionary Optimization. Heuristics Journal (1999)

    Google Scholar 

  32. Kargupta, H.: The Gene Expression Messy Genetic Algorithm. In: Proceedings of IEEE International Conference on Evolutionary Computation (1996)

    Google Scholar 

  33. Bandyopadhyay, S., Kargupta, H., Wang, G.: Revisiting the GEMGA: Scalable Evolutionary Optimization through Linkage Learning. In: Proceedings of IEEE International Conference on Evolutionary Computation (1998)

    Google Scholar 

  34. Bosman, P.A.N., Thierens, D.: Linkage Information Processing in Distribution Estimation Algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 1999) (1999)

    Google Scholar 

  35. Harik, G.: Learning Gene Linkage to Efficiently Solve Problems of Bounded Difficulty Using Genetic Algorithms, Ph.D. dissertation, University of Michigan (1997)

    Google Scholar 

  36. Harik, G.: Linkage Learning via Probabilistic Modeling in the ECGA, IlliGAL Report No. 99010 (1999)

    Google Scholar 

  37. Chen, Y.-p., Yu, T.-L., Sastry, K., Goldberg, D.E.: A Survey of Linkage Learning Techniques in Genetic and Evolutionary Algorithms, IlliGAL Report No. 2007014 (2007)

    Google Scholar 

  38. Heckendorn, R.B., Wright, A.H.: Efficient Linkage Discovery by Limited Probing. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2003) (2003)

    Google Scholar 

  39. Munetomo, M., Goldberg, D.E.: Identifying Linkage Groups by Non-linearity/Non-monotonicity Detection. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 1999) (1999)

    Google Scholar 

  40. Munetomo, M., Goldberg, D.E.: Linkage Identification by Non-monotonicity Detection for Overlapping Functions. Evolutionary Computation Journal (1999)

    Google Scholar 

  41. Pelikan, M., Goldberg, D.E., Cantu-Paz, E.: Linkage Problem, Distribution Estimation, and Bayesian Networks. Evolutionary Computation Journal (2000)

    Google Scholar 

  42. Bercachi, M., Collard, P., Clergue, M., Verel, S.: Evolving Dynamic Change and Exchange of Genotype Encoding in Genetic Algorithms for Difficult Optimization Problems. In: Proceedings of IEEE International Congress on Evolutionary Computation CEC 2007 (2007)

    Google Scholar 

  43. Collard, P., Aurand, J.-P.: DGA: an efficient Genetic Algorithm. In: Proceedings of ECAI 1994: 11th European Conference on Artificial Intelligence (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ying-ping Chen Meng-Hiot Lim

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bercachi, M., Collard, P., Clergue, M., Verel, S. (2008). Studying the Effects of Dual Coding on the Adaptation of Representation for Linkage in Evolutionary Algorithms. In: Chen, Yp., Lim, MH. (eds) Linkage in Evolutionary Computation. Studies in Computational Intelligence, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85068-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85068-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85067-0

  • Online ISBN: 978-3-540-85068-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics