Abstract
In electronics, there are two major classes of circuits, analog and digital electrical circuits. While digital circuits use discrete voltage levels, analog circuits use a continuous range of voltage. The synthesis of analog circuits is known to be a complex optimization task, due to the continuous behaviour of the output and the lack of automatic design tools; actually, the design process is almost entirely demanded to the engineers. In this research work, we introduce a new clonal selection algorithm, the elitist Immune Programming, (eIP) which uses a new class of hypermutation operators and a network-based coding. The eIP algorithm is designed for the synthesis of topology and sizing of analog electrical circuits; in particular, it has been used for the design of passive filters. To assess the effectiveness of the designed algorithm, the obtained results have been compared with the passive filter discovered by Koza and co-authors using the Genetic Programming (GP) algorithm. The circuits obtained by eIP algorithm are better than the one found by GP in terms of frequency response and number of components required to build it.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abbas, A., Lichtman, A., Pober, J., et al.: Cellular and molecular immunology. WB Saunders, Philadelphia (2000)
Cutello, V., Nicosia, G., Pavone, M.: Real coded clonal selection algorithm for unconstrained global optimization using a hybrid inversely proportional hypermutation operator. In: Proceedings of the 2006 ACM symposium on Applied computing, pp. 950–954 (2006)
Cutello, V., Nicosia, G., Pavone, M., Timmis, J.: An Immune Algorithm for Protein Structure Prediction on Lattice Models. IEEE Transactions on Evolutionary Computation 11(1), 101–117 (2007)
Freitas, A., Timmis, J.: Revisiting the Foundations of Artificial Immune Systems: A Problem-Oriented Perspective. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787. Springer, Heidelberg (2003)
Cutello, V., Nicosia, G., Pavone, M.: A hybrid immune algorithm with information gain for the graph coloring problem. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 171–182. Springer, Heidelberg (2003)
Cutello, V., Morelli, G., Nicosia, G., Pavone, M.: Immune algorithms with aging operators for the string folding problem and the protein folding problem. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 80–90. Springer, Heidelberg (2005)
Streeter, M., Keane, M., Koza, J.: Iterative Refinement Of Computational Circuits Using Genetic Programming. In: Proceedings of the Genetic and Evolutionary Computation Conference table of contents, pp. 877–884 (2002)
Koza, J., Bennett III, F., Andre, D., Keane, M., Dunlap, F.: Automated synthesis of analog electrical circuits by means of genetic programming. IEEE Transactions on Evolutionary Computation 1(2), 109–128 (1997)
Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs. Proceedings of the National Academy of Sciences 102(39), 13773–13778 (2005)
Musilek, P., Lau, A., Reformat, M., Wyard-Scott, L.: Immune programming. Information Sciences 176(8), 972–1002 (2006)
Koza, J., Bennett III, F., Andre, D., Keane, M.: Synthesis of topology and sizing of analog electrical circuits by means of genetic programming. Computer Methods in Applied Mechanics and Engineering 186(2-4), 459–482 (2000)
Koza, J., Jones, L., Keane, M., Streeter, M.: Towards industrial strength automated design of analog electrical circuits by means of genetic programming. Genetic Programming Theory and Practice II (2004)
Grimbleby, J.: Automatic analogue circuit synthesis using genetic algorithms. Circuits, Devices and Systems. IEE Proceedings [see also IEE Proceedings G-Circuits, Devices and Systems] 147(6), 319–323 (2000)
Alpaydin, G., Balkir, S., Dundar, G.: An evolutionary approach to automatic synthesis of high-performance analog integrated circuits. IEEE Transactions on Evolutionary Computation 7(3), 240–252 (2003)
Dastidar, T., Chakrabarti, P., Ray, P.: A Synthesis System for Analog Circuits Based on Evolutionary Search and Topological Reuse. IEEE Transactions on Evolutionary Computation 9(2), 211–224 (2005)
Koza, J.: Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann, San Francisco (1999)
Subramanian, A., Sayed, A.: Multiobjective filter design for uncertain stochastic time-delay systems. IEEE Transactions on Automatic Control 49(1), 149–154 (2004)
El-Habrouk, M., Darwish, M., Mehta, P.: Active power filters: a review. IEE Proceedings Electric Power Applications 147(5), 403–413 (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ciccazzo, A., Conca, P., Nicosia, G., Stracquadanio, G. (2008). An Advanced Clonal Selection Algorithm with Ad-Hoc Network-Based Hypermutation Operators for Synthesis of Topology and Sizing of Analog Electrical Circuits. In: Bentley, P.J., Lee, D., Jung, S. (eds) Artificial Immune Systems. ICARIS 2008. Lecture Notes in Computer Science, vol 5132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85072-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-85072-4_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85071-7
Online ISBN: 978-3-540-85072-4
eBook Packages: Computer ScienceComputer Science (R0)