Abstract
We present efficient algorithms to generate all edge-magic and vertex-magic total labelings on cycles, and all vertex-magic total labelings on wheels. Using these algorithms, we extend the enumeration of the total labelings on these classes of graphs.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wallis, W.D.: Magic Graphs. Birkhäuser, New York (2001)
Gallian, J.A.: A dynamic survey of graph labeling. The Electronic Journal of Combinatorics 15, DS6 (2008)
MacDougall, J.A., Miller, M., Wallis, W.D.: Vertex-magic total labelings of wheels and related graphs. Utilitas Mathematica 62, 175–183 (2002)
MacDougall, J.A., Miller, M., Slamin, Wallis, W.D.: Vertex-magic total labelings of graphs. Utilitas Mathematica 61, 3–21 (2002)
Godbold, R.D., Slater, P.J.: All cycles are edge-magic. Bulletin of the ICA 22, 93–97 (1998)
Goemans, M.: Personal Communication (2008)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baker, A., Sawada, J. (2008). Magic Labelings on Cycles and Wheels. In: Yang, B., Du, DZ., Wang, C.A. (eds) Combinatorial Optimization and Applications. COCOA 2008. Lecture Notes in Computer Science, vol 5165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85097-7_34
Download citation
DOI: https://doi.org/10.1007/978-3-540-85097-7_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85096-0
Online ISBN: 978-3-540-85097-7
eBook Packages: Computer ScienceComputer Science (R0)