Skip to main content

Clustered SplitsNetworks

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5165))

Abstract

We address the problem of constructing phylogenetic networks using two criteria: the number of cycles and the fit value of the network. Traditionally the fit value is the main objective for evaluating phylogenetic networks. However, a small number of cycles in a network is desired and pointed out in several publications.

We propose a new phylogenetic network called CS-network and a method for constructing it. The method is based on the well-known splitstree method. A CS-network contains a face which is k-cycle, k ≥ 3 (not as splitstree). We discuss difficulties of using non-parallelogram faces in splitstree networks. Our method involves clustering and optimization of weights of the network edges.

The algorithm for constructing the underlying graph (except the optimization step) has a polynomial time. Experimental results show a good performance of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandelt, H., Dress, A.: A canonical decomposition theory for metrics on a finite set. Advances in Mathematics 92, 47–105 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bryant, D., Moulton, V.: Neighbornet: An agglomerative method for the construction of planar phylogenetic networks. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 375–391. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Dress, A.: Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces. Advances in Mathematics 53, 321–402 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dress, A., Huson, D.: Constructing splits graphs. IEEE/ACM Transactions in Computational Biology and Bioinformatics 1, 109–115 (2004)

    Article  Google Scholar 

  5. Gusfield, D., Eddhu, S., Langley, C.: The fine structure of galls in phylogenetic networks. INFORMS Journal on Computing 16, 459–469 (2004)

    Article  MathSciNet  Google Scholar 

  6. Gusfield, D., Hickerson, D., Eddhu, S.: An efficiently computed lower bound on the number of recombinations in phylogenetic networks: Theory and empirical study. Discrete Applied Mathematics 155, 806–830 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Huson, D.: Splitstree: a program for analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73 (1998)

    Article  Google Scholar 

  8. Huson, D., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254–267 (2006)

    Article  Google Scholar 

  9. Huson, D., Klöpper, T.: Beyond galled trees - decomposition and computation of galled networks. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 211–225. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Koolen, J., Moulton, V., Tönges, U.: A classification of the six-point prime metrics. Europ. J. Combinatorics 21, 815–829 (2000)

    Article  MATH  Google Scholar 

  11. Moret, B.M.E., Nakhleh, L., Warnow, T., Linder, C.R., Tholse, A., Padolina, A., Sun, J., Timme, R.E.: Phylogenetic networks: Modeling, reconstructibility, and accuracy. IEEE/ACM Trans. Comput. Biology Bioinformatics 155(1), 13–23 (2004)

    Article  Google Scholar 

  12. Myers, S., Griffiths, R.: Bounds on the minimum number of recombination events in a sample history. Genetics 163, 375–394 (2003)

    Google Scholar 

  13. Nakhleh, L., Warnow, T., Linder, C.R., John, K.St.: Reconstructing reticulate evolution in species: Theory and practice. Journal of Computational Biology 12(6), 796–811 (2005)

    Article  Google Scholar 

  14. Song, Y.S., Wu, Y., Gusfield, D.: Efficient computation of close lower and upper bounds on the minimum number of recombinations in biological sequence evolution. Advances in Mathematics 21, 413–422 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Boting Yang Ding-Zhu Du Cao An Wang

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bao, L., Bereg, S. (2008). Clustered SplitsNetworks. In: Yang, B., Du, DZ., Wang, C.A. (eds) Combinatorial Optimization and Applications. COCOA 2008. Lecture Notes in Computer Science, vol 5165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85097-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85097-7_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85096-0

  • Online ISBN: 978-3-540-85097-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics