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Abstract. It is well understood that populations cannot grow without
bound and that it is competition between individuals for resources which
restricts growth. Despite centuries of interest, the question of how best
to model density dependent population growth still has no definitive an-
swer. We address this question here through a number of individual based
models of populations expressed using the process algebra WSCCS. The
advantage of these models is that they can be explicitly based on observa-
tions of individual interactions. From our probabilistic models we derive
equations expressing overall population dynamics, using a formal and
rigorous rewriting based method. These equations are easily compared
with the traditionally used deterministic Ordinary Differential Equation
models and allow evaluation of those ODE models, challenging their as-
sumptions about system dynamics. Further, the approach is applied to
epidemiology, combining population growth with disease spread.

1 Introduction

The idea that populations cannot grow without bound has been of interest to
modellers for centuries. Malthus [1], in 1798, proposed a simple exponential
growth model based on compound interest but noted that this was unrealistic,
since when a population becomes very large, access to resources will become
restricted, restricting further growth in the population. Verhulst proposed the
logistic growth model [2] to overcome this limitation and this is still widely used
to describe density dependent growth. Many other models have been proposed
to describe population dynamics [3–6] but it is not clear which model is most
appropriate in any given situation; the logistic model is the default choice in the
absence of other data. Models of population dynamics are not merely interesting
in isolation. For example in our field, epidemiology, adding birth and death of
individuals to a model of infectious disease spread can alter the dynamics of
the epidemic. Therefore, getting a suitable model of population growth is an
important step in producing realistic models of disease spread which can be
analysed to provide predictive information about potential impact of epidemics,
and to evaluate control strategies.

Process algebra has increasingly been used to model a wide range of biological
systems [7–11]. The benefits of using process algebras to study such systems are
twofold. First, process algebra allows formal, precise and unambiguous expres-
sion of a model. Second, process algebra has a formal mathematical semantics,



allowing rigorous investigation of the model via a range of techniques. For ex-
ample, our work uses the discrete time process algebra Weighted Synchronous
Calculus of Communicating Systems (WSCCS)[12]. The underlying semantics
of WSCCS can be viewed as a Discrete Time Markov Chain (DTMC). Simula-
tion can be used to explore the model. Steady state analysis can be carried out,
and properties of the Markov Chain computed, e.g. probability of being in a
particular state, or average number of occurrences of an action before a specific
event occurs. Such investigation can be computationally expensive. Our previ-
ous work [13, 14] has been to facilitate further symbolic analyses of the model by
developing a rewriting-based method to derive Mean Field Equations (MFEs)
from a description of a system in WSCCS. The MFEs describe the average be-
haviour of the system at the population level and are analogous to traditional
Ordinary Differential Equation (ODE) models of biological systems. The MFEs
provide an approximation of the system dynamics of the DTMC corresponding
to the WSCCS description. The derived MFEs are amenable to analysis using
established algebraic techniques developed by mathematical biologists for ODEs.

The key advantage of our approach is that biological observations of indi-
viduals can be exploited in making the (individual based) WSCCS model, and
the MFEs are derived automatically and efficiently. The alternative approach,
used by mathematical biologists for many years, is to simply write down the
MFE or ODE description assuming that behaviour at population level is well
understood. While this formulation of the equations is backed up by experience,
there is no rigorous relation between the actions of individuals and the outcome
at a population level. Matching with disease data provides validation of ODEs,
but many plausible terms can match the same data. In both approaches, facts
about individual behaviour are abstracted to obtain population level equations
capturing only information about the number in each class of individual. The
difference is that our approach makes assumptions about behaviour explicit and
that the method of abstracting is rigorous.

In this paper we consider the problem of accurately representing population
growth using process algebra. Others have investigated individual based models
of population dynamics and related their behaviour to population level equa-
tions. Sumpter [10] developed a simple WSCCS model of population growth
and derived MFEs for the model. Brännström and Sumpter [15] presented indi-
vidual based (not process algebra) models of competition which could be used
to derive several existing population models but notably not Verhulst’s logistic
equation. The work presented here improves on previous work by applying a
rigorous method across a range of different models of population growth.

Outline of the Paper. Section 2 gives a brief description of the syntax and se-
mantics of WSCCS used in our models, and an outline of the method for deriving
MFEs. In Sect. 3 WSCCS models of population dynamics are presented, which
include density dependent growth in a variety of formulations (in either births or
deaths, and introduced implicitly by enriching the WSCCS language or explicitly
by including agents representing resources for which the population competes).
The resultant changes in overall population dynamics are explored, comparing



the derived MFEs to traditional population level equations for population dy-
namics. In Sect. 4 we add disease spread to our model of population dynamics.
Our results are summarised in Sect. 5.

2 Background

2.1 WSCCS Syntax and Semantics

In WSCCS the basic components are actions and the processes (or agents) that
carry out those actions. The actions are chosen by the modeller to represent
activities in the system. For example, infect , send , receive, throw dice, and so
on. Actions form an abelian group with identity

√
and the inverse of action a

being a. Actions occur instantaneously and have no duration. There is no notion
of time in WSCCS, but there is ordering of events. WSCCS is a probabilistic
process algebra, meaning that the decision to move from one state to another can
be a probabilistic one. The formal syntax and semantics of WSCCS is presented
in Tofts [12]. The main details are repeated here for the convenience of the
reader.

The possible WSCCS expressions are given by the following BNF grammar:

A ::= X | a :A | Σ{wi.Ai|i ∈ I} | A×B | AdL | Θ(A) | A[S] | X
def= A .

Here X ∈ Var , a set of process variables; a ∈ Act , an action group; wi ∈ W , a
set of weights; S a set of renaming functions, S : Act → Act such that S(

√
) =

√

and S(a) = S(a); action subsets A ⊆ Act with
√
∈ A; and arbitrary indexing

sets I. The informal interpretation of the operators is as follows:

– 0 a process which cannot proceed, representing deadlock ;
– X the process bound to the variable X ;
– a :A a process which can perform the action a becoming the process A ;
– Σ{wi.Ai|i ∈ I} the weighted choice between processes Ai , the weight of Ai

being wi . Considering a large number of repeated experiments of this pro-
cess, we expect to see Ai chosen with relative frequency wi/Σi∈Iwi . Weights
are generally positive natural numbers or reals, but may also incorporate the
special weight ω which is greater than all natural numbers. This is used in
priority and is written mωn where m,n ≥ 0. The binary plus operator can
be used in place of the indexed sum i.e. writing Σ{11.a :0, 22.b :0|i ∈ {1, 2}}
as 1.a :0 + 2.b :0 ;

– A × B the synchronous parallel composition of A and B . At each stage
each process must perform an action with the composed process performing
the composition (denoted #) of the individual actions, e.g. a : A × b : B
yields a#b : (A×B). This is a powerful operator: models are constructed by
describing simple individuals and composing a number of those in parallel.
McCaig [13] introduces an extended notation A{n} which is syntactic sugar
for n instances of process A in parallel, where n ∈ IN ;



a:A
a−→A

P
{wi.Ai|i∈I}

wi7−→Ai

A
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b−→B′

A×B
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A
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A
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A
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A
a−→A′ a∈L

AdL a−→A′dL
A

w7−→A′ doesL(A′)

AdL w7−→A′dL

A
a−→A′

A[S]
S(a)
−→A′[S]

A
w7−→A′

A[S]
w7−→A′[S]

A
a−→A′ X

def
= A

X
a−→A′

A
w7−→A′ X

def
= A

X
w7−→A′

A
a−→A′

Θ(A)
a−→Θ(A′)

A
nωi
7−→A′@(j>i).A

mωj
7−→

Θ(A)
n7−→Θ(A′)

Table 1. Operational rules for WSCCS

– AdL a process which can only perform actions in the group L . This operator
is used to enforce communication on actions b /∈ L. Two processes in parallel
may communicate when one carries out an action and the other carries out
the matching co-action, e.g. infect and infect . Communication can be used to
model passing of information from one process to another, or to coordinate
activity. Such communication is strictly two-way; that is, only two processes
may interact on this action ;

– Θ(A) represents taking the prioritised parts of the process A only ;
– A[S] represents A relabelled by the function S (we do not use relabelling in

this paper, but it is included for completeness) ;
– X

def= A represents binding the process variable X to the expression A .

The semantics of WSCCS is transition based, defining the actions that a
process can perform and the weight with which a state can be reached. The
operational rules of WSCCS, presented in Table 1, formalise the descriptions
above. In particular note the two different arrows which feature in the table:
a→ represents a transition associated with the action a ; and w7−→ represents a
transition associated with a weight w . The auxiliary predicate doesL(A) , which
denotes the ability of A to perform L after zero or more probabilistic actions, is
well defined since only finitely branching choice expressions are allowed.

2.2 Deriving Mean Field Equations from WSCCS Models

In McCaig’s thesis [13] and the related report [14] a method is described to
automatically derive Mean Field Equations from WSCCS models. We give an



N
def
= pd.

√
: 0 + pb.

√
: (N ×N ) + (1− pd − pb).

√
: N

Population
def
= N{n}d{

√
}

Fig. 1. Naive population model

overview of the approach here to aid understanding of the following sections.
Sample derivations are given at the end of this section and in Sect. 3.2.

Consider the simple model of population growth in Fig. 1. The N agents
die with probability pd, becoming the null agent 0, give birth with probability
pb, becoming the agent consisting of two N agents in parallel, or do neither
with probability (1 − pd − pb), remaining as a single agent N . The model can
be simulated, producing a single trace through the dynamics of the system. A
second simulation may of course produce quite different behaviour since this is a
stochastic process; therefore, of more interest is the average behaviour of the sys-
tem as time progresses. This can be obtained by averaging the time series results
of repeated simulations of the system. Clearly this becomes time-consuming, as
the number of processes n and number of repetitions increases. An alternative is
to generate the whole transition system for the model and to average the states
produced, but as n increases the state space grows exponentially.

McCaig’s method avoids generating the state space of the whole system, in-
stead applying transformations to the WSCCS expression of the model, yielding
an approximation (average) of the transition system in the form of first-order
mean field equations. The approximation is shown to be “good” (i.e. lies within
the standard deviation when compared with repeated simulations) in McCaig’s
thesis. Further, when the system becomes infinitely large, the mean of the DTMC
corresponding to the transition system is proved to be equivalent to the derived
MFEs. Larger populations eliminate the stochastic effects associated with low
copy numbers.

The advantages of our approach are: the computational expense of generat-
ing the state space and/or simulation is avoided (the method is O(a2c) where a
is the number of agents and c is the number of actions in the WSCCS descrip-
tion); it is a symbolic approach (avoiding questions regarding the exploration of
the parameter space); and the MFEs, being a different view of the system and
amenable to further analysis, offer new insight to the system.

The method applies to models of the form A1{n1}|...|Am{nm} where the Ai
communicate with each other (usually on a subset of actions). Models are limited
in that steps involving probabilistic choice between actions must be separate from
steps involving communication (which must have branches weighted 1).

Independently, the PEPA group [16, 17] and Cardelli [18] have proposed
methods for deriving ODEs from process algebra. Their work differs in that
their process algebras are continuous, based on rates rather than probabilities.
Two of the methods are based on a mass action assumption, and not tied to
the standard process algebra semantics. In contrast, our goal has been to pre-



serve this association, so that understanding individuals and their interactions
translates automatically to population behaviour via process algebra semantics.

Transition Table: Relating Actions to Overall System Evolution. The transition
system may be viewed as the evolution of the state vector A1{n1}|...|Am{nm}
For a particular Ai an action has three possible effects:

exit activity Following the action, the process evolves to some other agent Aj
therefore the number of Ai agents is decreased.

entry activity In symmetry with an exit activity for Ai above must be an
entry activity for Aj. The number of Aj agents increases.

none The process becomes Ai and there is no change in number of Ai agents.

WSCCS is a synchronous calculus, therefore in each time step, for every agent in
the system, one of the above activities will occur. Our method is based around
construction and interpretation of a transition table TT noting these exit and
entry activities (Fig. 2).

for each agent Ai {
for each (wj .aj : Ak) ∈ transitions(Ai) {

for each Am ∈ components(Ak)
TT[(Ai, aj),Am] = TT[(Ai, aj),Am] + calculateTerm(Ai, wj , aj)

} }

Fig. 2. Constructing the transition table from a WSCCS model

The rows of TT denote the agents Ai at time t and their enabled actions aj.
The columns of the transition table denote the agents Ak at the next time t+1.
The term in cell (Ai aj, Ak) is the proportion of Ait agents performing aj to
become Akt+1. The derivation of this term is fully determined (see description
below) by the context of the action carried out (e.g. part of a probabilistic
choice, or part of a communication) and the composition of the population (i.e.
how many of each different agent there are). Where Ai evolves to the same agent
Ak irrespective of which action it performs a single row is used for that agent
which is labelled Ai ∗. An example is the F1 agent in Fig. 4. The mean field
equation for Akt+1 is obtained by summing the terms in the column Ak.

Some auxiliary definitions are required. Processes can be classified by syn-
tactic features as: communicating (having an action enabled that is involved in
a communication), probabilistic (having only actions enabled that are not in-
volved in communication), and priority (communicating and using ω weights).
Given a serial process A = w1.a1 : A1 + w2.a2 : A2 + ... + wn.an : An define
transitions(A) = {w1.a1 :A1, w2.a2 :A2, ..., wn.an :An}. Given a parallel process
A = A1 × A2 × ... × An define components(A) = {A1, A2, ...An}. For a pro-
cess communicating on action a, we define two groups of agents involved in the
collaboration: collaborators are those processes with the matching action a, and
competitiors are those processes with the same action a.



function calculateTerm (A, w, a): String {
case A in {

probabilistic(A): return w ∗At;
communicating(A) and priority(A):

term = (At ∗ collaborators(A))/(At + competitors(A));
if a equals

√
return (A - term) else return term;

communicating(A) and not priority(A):
term = (At ∗ collaborators(A))/(At + collaborators(A) + competitors(A));
if a equals

√
return (A - term) else return term;

}}

Fig. 3. Pseudo code to calculate proportion of agents at time t + 1

The pseudo code to compute the terms in the table is given in Fig. 3. For
probabilistic choice, the semantics of WSCCS (Table 1) specifies that over a
number of experiments the different branches will be taken in numbers consistent
with their weights. For convenience, the weights in such choices sum to 1 in
the models in this paper hence the term is simply wAt. For communication,
McCaig enumerates the possible outcomes based on a classification of modes
of communication (prioritised or not, single action a or multiple actions e.g.
a#a#a). This results in complex formulae based on the weighted multinomial
choice of those outcomes giving the average number of communications. For
single actions, as used in this paper, these formulae can be simplified. These are
the formulae used in the calculateTerm function of Fig. 3. The full version of the
approach [13, 14] assumes weights do not have to sum to 1, and also gives the
formulae for multiple action communications.

Derivation of MFE for a Simple Population Growth Model. Consider
again the simplistic model of population growth given in Fig. 1. The actions in
Fig. 1 are simply

√
. That is, activities are of no interest, only the evolution of

numbers of agents is significant. As in all of our models, the system as a whole
is described by the system equation Population, comprising multiple copies of
each kind of agent in parallel.

The transition table for this system is as follows:

0 Nt+1

(Nt,
√

) pdNt (1− pb − pd)Nt + 2pbNt

Each column leads to a MFE for that agent, but 0 is ignored here since this is
not of interest to us. The method outlined above generates the following MFE

Nt+1 = (1 + pb − pd)Nt (1)

where Nt+1 represents the number of N agents at time t + 1 expressed in terms
of Nt, the number of N agents at time t. Since this model has no communication
between agents, and a single step with probabilistic choice, the derived MFE can
be easily verified manually.



3 Density Dependent Growth

Equation (1) describes a simple recurrence relation. With pb > pd the popula-
tion will become infinitely large; pb < pd will lead to the population dying out,
while pb = pd will lead to an equilibrium state for any initial population size,
N0 = n. The probabilities pb and pd are fixed, therefore the average behaviour of
this model is similar to that of the simple exponential growth model described
by Malthus [1]. Biologically, it is more realistic to consider a model in which
the probability of birth and death vary depending on the size of the population
at each instant in time (density dependence). For example, as the population
grows food and shelter become scarce, therefore individuals become weaker and
are more likely to die. Alternatively this weakness may manifest itself as a re-
duced fecundity and a reduction in the birth rates. This section presents several
ways of modelling these notions in WSCCS, obtaining more realistic models of
population growth.

3.1 Functional Probabilities

What is required is the ability to modify pb and/or pd on the fly as the pop-
ulation changes. The first method described here is to add assumptions about
how probability of birth and death depend on population size using functional
probabilities [13]. Functional probabilities add considerable convenience and ele-
gance of expression to complex models, while adding no new semantic concepts
to WSCCS. Functional probabilities are implemented by encoding population
size as part of the agent name, a technique [19] commonly used in process alge-
bra. The size of the resultant model is much increased, and the translation itself
is unremarkable: the interested reader is referred to [13] for the full details.

Instead of fixed probabilities, a functional definition is given. For example,
probability px can be made a function f of the number of A agents (denoted
[A]) by

px
def= min(max(0, f([A])), pL) .

The function may take any format required, since it appears directly in the
MFEs and is often not computed numerically. The probability pL is the upper
limit for px, chosen to ensure that all probabilities in the model are always in the
range 0 ≤ p ≤ 1. The min and max expressions may be required to ensure that
px is in the allowed range, but these terms make mathematical analysis of the
MFEs more complex. Often, in our further analysis we assert px = f([A]) based
on very low likelihood of reaching a state where min and max are not satisfied
by f (therefore those states make little contribution to the average behaviour
captured by the MFEs).

Density Dependent Birth. Density dependent birth can be added to the
model in Fig. 1 by making the probability of birth pb inversely proportional to
[N ].

pb
def= min(max(0, pb0 − k ∗ [N ]), pL) ,



where pb0 is the probability of birth in the absence of crowding and k is a measure
of the strength of the effect of crowding, 0 < k � 1.

Using the method of Sect. 2.2, the MFE derived is

Nt+1 = Nt + (pb0 − kNt − pd)Nt

= Nt + (pb0 − pd)Nt

(
1− kNt

pb0 − pd

)
. (2)

This is our first realistic model of population growth, derived from an expression
of individual behaviour. Compare this to the discrete time version of Verhulst’s
logistic equation

Nt+1 = Nt + rNt

(
1− Nt

K

)
. (3)

where r represents reproductive rate and K the carrying capacity of the popu-
lation. Simple substitution of r = (pb0 − pd) and K = (pb0 − pd)/k in (3) yields
(2). The logistic equation is the most commonly used equation for describing
population dynamics and is frequently included as a self limiting growth term
in models of disease spread. This gives confidence in our approach, and endorses
Verhulst’s equation.

Density Dependent Death. Density dependent death can similarly be added
to Fig. 1 by choosing probability of death pd directly proportional to [N ] with

pd
def= min(max(0, pd0 + k ∗ [N ]), pL) ,

where pd0 is the probability of death in the absence of crowding. The MFE,
derived once again using our method,

Nt+1 = Nt + (pb − (pd0 + kNt))Nt

= Nt + (pb − pd0)Nt

(
1− kNt

pb − pd0

)
,

is equivalent to the logistic equation with r = (pb − pd0) and K = (pb − pd0)/k.

Summary. The results above are pleasing: we have shown that it is possible
to derive the logistic equation from an individual based model of population
growth. This contradicts the findings of Brännström and Sumpter [15] who did
not find the logistic equation for any of their models. Our results should not be
surprising: in the functional probabilities we are making the probabilities linearly
proportional to the population size, effectively encoding the same assumptions
which lead to the logistic equation in the traditional population level models. It
would have been more surprising if we had not derived the logistic equation.



N1
def
= 1.eat : (N2×N2) + 1.

√
: N2

F1
def
= 1.eat : F2 + 1.

√
: F2

N2
def
= pd.

√
: 0 + (1− pd).

√
: N1

F2
def
= 1.

√
: F1

Population
def
= N1{n} × F1{f}d{

√
}

Fig. 4. Density dependence on births with non-prioritised communication

3.2 Food as an Explicit Resource

The advantage of individual based modelling techniques is that population level
assumptions can be avoided, to be replaced by population level behaviours aris-
ing from the explicit individual interactions. To the models seen so far we add
agents representing “food”, i.e. some finite resource required by individuals to
survive, and for which there is competition. Any other similar resource, e.g.
space, can be modelled in exactly the same way. Access to this resource can be
used to determine the likelihood of either birth or death.

Acquiring a resource is modelled in WSCCS by communication between food
agents and individuals, requiring the use of more complex language features than
seen in the models so far. Two forms of communication are available: prioritised
and non-prioritised. Using prioritised communication between the food agents
and the population agents forces individuals to eat; however, in a population it is
likely that some individuals, while foraging, may fail to find food which is present.
Using non-prioritised communication models the possibility that individuals fail
to eat even when food is present and is therefore more biologically plausible. As
above, models exploring density dependence on births and density dependence
on deaths are considered separately.

Density Dependence on Births. The model given in Fig. 4 has individuals
in the population competing for the available food resource (the eat action),
giving birth after eating, and dying probabilistically.

The agents N1 and N2 represent the members of the population at the
different stages of the model. The N1 agents can eat and become the parallel
agent N2 × N2, representing birth. If they do not eat the N1 agents become
a single N2 agent. In the second stage of the model the N2 agents make a
probabilistic choice to die or survive. The total number of food agents is constant
therefore the F agents (F1, F2) should be thought of as units of food which the
environment can produce in a time step rather than discrete portions of food
which are consumed by the population.

For such models, the method generates MFE for all agents, i.e. N1, N2, F1, F2,
where N1 is expressed in terms of N2 and vice versa. Similarly for F1 and F2.
Generally we are interested only in a complete cycle of behaviour. That is, start-
ing with agents N1, evolving to agents N2, then back to N1 (two stages here).



We take the N1 equation, substitute to remove occurrences of N2 and obtain
an equation only in N1 (and F1). Finally, we rename N1 as simply N . The fact
that the number of food agents remains constant means that the derived MFE
for F1 can be simplified to f in the MFE for N .

Deriving the terms of the MFEs for this model is more complex: although
the definition of N1 suggests the choice to eat or not is equally weighted, in fact
this choice is also influenced by availability of F1 agents with which to synchro-
nise. This is reflected in the calculateTerm function described in Sect. 2.2. For
example, here it is possible that no individuals eat (with very low probability),
or that all do (assuming [N1] ≤ [F1]) (also with low probability), or all of the
possibilities inbetween. As explained earlier, the calculateTerm function yields
a formula based on the weighted multinomial choice of those possible outcomes.
The method yields the following transition table. Note that the term for the
communicating action (eat) reflects that N1 collaborates with F1 but has no
competitors for the action.

0 N1t+1 N2t+1 F1t+1 F2t+1

(N1t, eat) 2 N1t∗F1t
N1t+F1t

(N1t,
√

) N1t − N1t∗F1t
N1t+F1t

(F1t, ∗) F1t

(N2t,
√

) pdN2t (1− pd)N2t

(F2t, ∗) F2t

Summing the columns and simplifying as described above leads to the MFE

Nt+1 = (1− pd)Nt +
(1− pd)fNt

f + Nt
. (4)

Here the term (1 − pd)Nt represents the mean proportion of the existing pop-
ulation which survives the probabilistic death stage. The term fNt/(f + Nt)
represents the mean number of new births with the factor (1− pd) representing
the proportion of new births which survive the probabilistic death stage. We find
the steady state of this model by setting Nt+1 = Nt = N∗:

N∗ = (1− pd)N∗ +
(1− pd)fN∗

f + N∗ .

Solving for N∗ we get

N∗ =
(1− 2pd)f

pd
.

For biological realism the steady state should be positive, therefore pd < 0.5.
Note that this fact is not obvious from the WSCCS model, but becomes clear in
the MFE. The values of these probabilities can be observed in the field, but an
important factor is the length of timestep. If we need to reduce pd to meet the
above requirement we can reduce the timestep represented by our models and
adjust all other parameters accordingly.



N1
def
= 1.eat : N2 + 1.

√
: 0

F1
def
= 1.eat : F2 + 1.

√
: F2

N2
def
= pb.

√
: (N1×N1) + pd.

√
: 0 + (1− pb − pd).

√
: N1

F2
def
= 1.

√
: F1

Population
def
= (N1{n} × F1{f})d{

√
}

Fig. 5. Density dependence on deaths with non-prioritised communication

Sumpter [10] developed a mechanism for describing self limiting growth in a
population which made use of food as an agent. He derived the following MFE
using an heuristic

Nt+1 = (1− pd)Nt + min[(1− pd)Nt, f ] ,

where pd is the probability of death in any timestep and f is the number of food
agents. The underlying assumptions of this model are undesirable biologically:
individuals are guaranteed to find food if it is available because prioritised com-
munication is used. Therefore, every member of the population will give birth
at each step of time until the size of the population is larger than the number
of food agents, after which the number of births will be equal to the number of
food agents. This model has a stable steady state of N∗ = f/pd, when pd ≤ 0.5,
which is larger than for our model.

Density Dependence on Deaths. In Fig. 5 the N1 agents can once again
eat, becoming the agent N2, but here if they do not eat they die, becoming the
null agent 0. The N2 agents then give birth probabilistically and, to be realistic,
can also die probabilistically. That is, in each step of time a proportion of the
population die, for instance, due to age and some die due to a lack of food. The
MFE for this model is

Nt+1 = (1 + pb − pd)
fNt

f + Nt
, (5)

where term fNt/(f +Nt) represents the proportion of the population which eat
and therefore survive the competition for food, with the factor (1 + pb − pd)
representing the increase in the population due to births and the decrease due
to probabilistic death. Equation (5) can be rearranged to give

Nt+1 =
aNt

1 + bNt
, (6)

where a = (1 + pb − pd) and b = 1/f . Equation 6 is the Beverton-Holt model
[3], originally proposed as a model of salmon populations displaying density
dependent birth; however, we have derived this equation from an individual
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Fig. 6. Density dependence on deaths, with choice followed by communication

based model featuring density dependent death. Our derivation endorses the
plausibility of the Beverton-Holt model, which is commonly used in models of
plant populations but not so widely used for animal populations.

Setting Nt+1 = Nt = N∗ in (5) and solving for N∗ yields the steady state

N∗ = (pb − pd)f .

In this case to ensure the steady state is positive we require pb > pd.

Order Matters? Clearly, changing the WSCCS model can affect the MFEs
derived, but even a relatively small, intuitively negligible, change can make a
difference. In the models considered in Figs. 4 and 5 the focus is on the two-
stage behaviour of the N1 agents. This means that the communicative (eating)
step is followed by the probabilistic step with births and deaths. We may naively
assume that considering the two-stage behaviour of the N2 agents, thus reversing
the order of the communicative and probabilistic steps, would lead to the same
overall long term behaviour of the model. However, the derived MFE for the
behavior of the N2 agents in Fig. 5 is

Nt+1 = (1 + pb − pd)
fNt

f + (1 + pb − pd)Nt
,

where the denominator features a factor of (1 + pb − pd) not present in (5).
This difference arises because changing the order in which the steps occur

also changes the underlying biological assumptions of the model. The newborn
individuals are now available to compete for the available food (leading to the
+pb term) and the individuals which probabilistically die are not (leading to the
−pd term). Generating a WSCCS model in which probabilistic choice is followed
by a communicative phase is more complex than simply swapping these steps.
A suitable model, which will lead to the MFE (5), can be seen in Fig. 6.

In Fig. 6 the agents which make the probabilistic choice to die enter a dying
state, D2, where they compete for food and are then removed from the system,



irrespective of whether they eat or not. The newly born individuals are in the
state B2 which does not compete for food and becomes N1 at the next stage.
This means that the overall mean two-stage behaviour of the N1 agents in Fig.
6 is the same as for the N1 agents in Fig. 5.

This simple example illustrates the importance of thinking carefully about
the biological interpretation of actions in the WSCCS model, highlighted by
the derivation of MFEs. This is particularly important when considering more
complex models such as that in Sect. 4 which adds population dynamics to a
model of infectious disease.

4 Population Dynamics and Disease

While population dynamics are interesting in their own right they are also cru-
cial in developing realistic models of disease spread. The model in Fig. 7 adds
infectious disease spread, based on the models of Norman and Shankland [8], to
the density dependent death population dynamics of Fig. 5. In a typical disease
model the population is divided into 3 groups: susceptibles (S) have never had
the disease, infecteds (I) currently have the disease, and recovereds (R) have
previously had the disease and are immune to future infection.

The first stage in the model is the eating stage in which S0, I0 and R0 all
compete for food. Those that do not eat will die. The second stage is a contact
stage in which infected (Trans) agents come into contact with the population
and potentially pass the disease to susceptibles. The infected individuals are rep-
resented by parallel agents with the Trans agents passing on the disease and the
T1 agents able to be contacted by a Trans agent. Communication is prioritised
so that all Trans make contact. Prioritised contact is plausible biologically since
contact with the whole population is possible (not just the susceptibles) and
contact is not guaranteed to result in infection (see SI2). S1 that are contacted
become SI2, while T1 and R1 agents are not affected by contact since infected
and recovered individuals cannot become infected again. After the contact stage
the Trans agents all become the null agent 0 so that the infected individuals
are once again represented by a single agent. The final stage is the probabilistic
stage in which all individuals can give birth to a susceptible individual, with
probability pb, or die, with probability pd. In addition the SI2 agents become
infected with probability pa and I2 agents can recover with probability pr.

The system of MFEs derived from this model is

St+1 =
f

f + Nt

(
(1− pd)St + pbNt −

paStIt

Nt

)
It+1 =

f

f + Nt

(
(1− pd − pr)It +

paStIt

Nt

)
Rt+1 =

f

f + Nt

(
(1− pd)Rt + prIt

)
, (7)

where Nt = St + It + Rt, the total population size at time t. These are sim-
ilar to the standard SIR equations with frequency dependent transmission of
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Fig. 7. SIR model with density dependence on deaths

disease [20], a form arising naturally from WSCCS models [8]. Here, however,
there is an extra factor of f/(f + Nt) on each equation that is the proportion
of the population successfully eating. This is unconventional since in traditional
models the transmission term (in this case (paStIt)/Nt) is not affected by the
density dependent birth or death term. We emphasise that the population dy-
namics of (7) come directly from explicit representation of individuals competing
for food rather than any population level assumptions imposed on the model.
These equations are therefore candidates for modelling population dynamics in
disease systems, despite the differences to traditional models.

In contrast, if we had taken the population dynamics from Sect. 3.1, with
functional probability of birth, and added disease as above, we would merely
add a logistic term to the equation for S with each group also dying probabilis-
tically. This result would be closer to the traditional ODE models. The advan-
tage of this approach is that the nonlinear density dependent term only appears
in one equation (S), therefore the equations are simpler and easier to analyse
mathematically than (7) which contains nonlinear terms in all equations. The
disadvantage of basing a disease model on the functional probability models of
population growth is that the latter are based on assumptions about population
growth which may be incorrect.

5 Conclusion

In this paper we have presented population dynamics models in which the popu-
lation will, over time, tend to some steady state and will not display unbounded
growth. There are two distinct types of model: those in which the effects of re-
stricted resources are implicitly included by allowing more complex language fea-



tures in the model (functional probabilities) and those in which those resources
are explicitly represented by agents. The introduction of functional probabili-
ties allow us to succinctly take full advantage of the expressive capabilities of
WSCCS. These models led naturally to the logistic equation [2], the classical ex-
pression used to describe population dynamics. This is in contrast to the results
of Brännström and Sumpter [15] who found several other existing expressions
could be derived from their individual based models but not the logistic equa-
tion. The logistic equation arises from our models because the assumptions used
to introduce density dependence – functional probabilities which are linearly
proportional to the population size – match the assumptions on which the lo-
gistic equation is based. If we use functional probabilities which are non-linearly
proportional to the population size we would of course obtain different MFEs. It
can be easily argued that adding functional rates is self-defeating for our objec-
tives; if we allow inclusion of strong implicit assumptions, such as the nature of
population growth, then we may as well simply write down the MFEs directly.

In order to reduce the number of population level assumptions in our models
we have also developed models which feature agents to represent food, with the
dynamics in the population arising from the competition between individuals
for food. With density dependent death this model leads to the Beverton-Holt
model [3] which was proposed for the population dynamics of fish stocks. The
fact that this equation has naturally arisen here from the competition between
individuals means we can consider the Beverton-Holt model a serious candidate
to be used when modelling population dynamics. Further investigation including
matching with data is required.

Lastly, our goal in population modelling is to incorporate models of disease
to gain a more realistic individual based disease model. By adding a model of
disease spread to population dynamics we have derived a system of equations (7)
which differs from those which have previously been described in the literature.
Because the population dynamics in our model naturally arise from the inter-
actions between individuals and the environment, rather than any assumptions
we have imposed on the population dynamics, we have well-founded reason to
propose this model for a disease system featuring density dependence in deaths.
As above, future work will include validating our models with disease data.
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