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Abstract. In the course of understanding biological regulatory networks
(BRN), scientists usually start by studying small BRNs that they believe
to be of particular importance to represent a biological function, and
then, embed them in the whole network. Such a reduction can lead to
neglect relevant regulations and to study a network whose properties can
be very different from the properties of this network viewed as a part of
the whole. In this paper we study, from a logical point of view, the
preservation of properties inherited from small BRNs. The signature of
BRN, constituted by a graph, is one of the distinctive features on which
embeddings can be defined which leads us to give a first condition on
the subgraphs ensuring the preservation of properties of the embedded
graphs.
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1 Introduction

To understand biological regulatory networks (BRN for short), modeling frame-
works and simulation technics are often useful since the complexity of the inter-
actions between constituents of the network (mainly genes and proteins) makes
intuitive reasoning difficult [3]. Nevertheless, simulation technics are in practice
difficult to manage for most of the systems because they are either large, com-
plex or only partially known. Indeed, the lack of precise knowledge about the
? This work is performed within the European project GENNETEC (GENetic NeT-
works: Emergence and Complexity) STREP 34952.
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system (are all constituents/interactions taken into account? Which values are
given to parameters? Which is the confidence on these parameters?...) is one of
the more accurate difficulties to handle computationally all possible hypotheses
on the system. Qualitative modeling frameworks have then arose [7, 13, 5]: they
consist in abstracting continuous concentrations of constituents into qualitative
ones (discrete and finite) although preserving qualitative observations (like pres-
ence/absence of a constituent, increasing of the concentration of a target when
increasing the one of a regulator...).

We focus in this paper on the multivalued discrete approach developed by
R. Thomas and co-workers [13], in which the concentrations of constituents are
abstracted by integers to denote thresholds from which constituents can act on
other ones in the network. In this formalism, biological systems are described
by an interaction graph defining the static part of the system from which we
can build a huge but finite set of state transition graphs defining all the pos-
sible dynamics of the system. However, given an interaction graph, just a few
dynamic models meet the set of biological experiment observations bringing
into play interactions between graph’s constituents. To cut down in the class
of dynamic models and just preserve the good candidates, some recent works
expressed these biological experiment observations by temporal properties and
used various model-checking technics to select suitable dynamic models [4, 2, 9].
From these works, two software tools have been developed: GNA [4] which auto-
matically checks that a given dynamic model satisfies some biological experiment
observations, and SMBioNet [2] which cuts down in the whole class of dynamic
models to select the ones that satisfy some given biological experiment obser-
vations. In both cited tools, temporal properties denoting biological experiment
observations have been expressed in Computation Tree Logic [6].

These logical approaches based on model-checking technics have been shown
very efficient to study small BRNs but are not well-adapted for large BRNs. The
well-known reason is because model-checking technics are time consuming. In-
deed, we have to deal with the limit given by complexity theory: model-checking
is based on NP-hard or exponential algorithms. In practice, human cleverness is
used to find the situations for which model-checking may become tractable. This
is what we propose to do in this paper. Indeed, BRNs are generally embedded
into other ones. To allow to describe and study BRN behaviors in the large,
we propose in this paper to study the consequences of the embedding. More
precisely, we propose to study which are the conditions to impose on the embed-
ding to preserve the dynamics of sub-BRNs. We show that, generally speaking,
questioning temporal properties (i.e. biological experimental observations) leads
us to study the dynamics of the global BRN “from scratch”, i.e without taking
benefit of the dynamics of the sub-BRNs, which can be unacceptable in run-
ning time. On the contrary, if all dynamics of sub-BRNs are preserved, this then
leads us just to focus on the biological experiment observations linked with in-
teractions of the sub-BRNs between them. We can then hope to be able to use
both previous tools to automatically study the dynamics of the global BRN.
Moreover, this approach corresponds to the classical method used by most of
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biologists when they study a biological system. They start by studying small
BRNs that they believe to be of particular importance to represent a biological
function. The interactions of this BRN with the external genes, are studied only
afterwards even if these external genes potentially could influence the behavior
of the studied part. Of course, this bottom-up approach makes sense only if there
is a complete preservation of sub-systems behaviors as this has been done in this
paper up to some sufficient conditions. Otherwise, systems can only be studied
globally because of the apparition of emergent properties. To comprehend this
notion of emergent properties, we introduced in [1] an abstract mathematical
denotation for complex systems.

The paper is then structured as follows: after some reminders on the temporal
logic CTL in Section 2, Section 3 presents a logical characterization for BRNs.
Section 4 presents the main result of this paper: the preservation of properties
through the embedding of BRNs into larger networks. In Section 5, we give a
counter-example to justify the constraints we put on graph embedding to ensure
property preservation. Finally in Section 6 we give some concluding remarks.

Let us notice the particularity of the logic for BRN presented in this paper:
signatures are not simple sets of symbols but are interaction graphs (the static
part of BRN). This is what makes tough the definition of the embedding (see
Definition 2) as well as the definitions of the consequences of the embedding both
on biological experiment observations expressed over sub-BRNs (see Definition 4)
and on the dynamics of sub-BRNs embedded into a larger one (see Definition 8).
This is what makes also nontrivial the proof of the preservation of temporal
properties through embedding.

2 Preliminaries

Computational tree logic (CTL) [6] is a branching-time temporal logic where the
structure representing all possible executions is tree-like rather than linear. It is
well-adapted to specify and reason about non-deterministic and/or concurrent
processes. Here, we consider actually a restriction of CTL by removing the next
operator X, noted CTL-X [14, 15]. The reason is for biological applications,
the logical connector X is not of big relevance. The reason is twofold. First,
the time mandatory for a biological system to change of qualitative state is
not deterministic and the elapsed time between two consecutive states has a
large variance. Secondly, the discretization of the dynamical system abstracts
the quantitative time (represented by t ∈ R+) into a qualitative time (n ∈ N).
Then the real time necessary for a NEXT transition of the biological system
depends also on the number of intermediate states used for the discretization
step.

When dealing with propositional fragment of logics, a signature Atom is only
a set of propositional variables which are the atomic formulas.

Given a signature Atom, a model over Atom, so-called Kripke frame, is a
transition system (S, T ) where:
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– S is a set whose elements are usually called states;
– T ⊆ S × S is a binary relation satisfying: ∀s ∈ S, ∃s′ ∈ S, (s, s′) ∈ T ;

and (S, T ) is equipped with a total function L : S → 2Atom called labeling
function.

Therefore, models over Atom are labeled transition systems where T denotes
the transition relation and L is the labeling associating for each state s of S the
set of propositional variables true at s.
Formulas over Atom are well-formed formulas whose syntactical rules are given
by:

For ::= ATOM | For ⇒ For | For ∧ For | For ∨ For | ¬For
AG For |EG For |AF For |EF For | A[For U For] | E[For U For]

The intuitive meaning of modal operator Fϕ (resp. Gϕ) means that ϕ will be
finally (F) (resp. is globally (G)) true. The prefix A (resp. E) means that the
formula is true for all possible futures (resp. there exists a future for which the
following property is true). Finally, formulas of the form ϕ U ψ mean that ϕ has
to be true until (U) ψ becomes true. They are also preceded by the prefixes A
or E.
The validity of formulas is expressed via a binary relation usually denoted
by |= between models and formulas over a set of atomic formulas Atom. A
path is any sequence σ = (s0, s1, . . . , sn, . . .) such that for every i ∈ N we have
(si, si+1) ∈ T . Then, (S, T ) |= ϕ if for any state s ∈ S, (S, T ) satisfies ϕ, denoted
by ((S, T ), s) |= ϕ, according to the following inductive definition:

– ((S, T ), s) |= p iff p ∈ L(s) for p ∈ Atom;
– ((S, T ), s) |= AGϕ (resp. ((S, T ), s) |= EGϕ) iff for every (resp. there exists

a) path (s0, s1, . . . , sn, . . .), for every i ∈ N, ((S, T ), si) |= ϕ;
– ((S, T ), s) |= AFϕ (resp. ((S, T ), s) |= EFϕ) iff for every (resp. there exists

a) path (s0, s1, . . . , sn, . . .), there exists i ∈ N, ((S, T ), si) |= ϕ;
– ((S, T ), s) |= A[ϕ U ψ] (resp. ((S, T ), s) |= E[ϕ U ψ]) iff for every (resp. there

exists a) path (s0, s1, . . . , sn, . . .), there exists i ∈ N such that ((S, T ), si) |= ψ
and for every j < i, ((S, T ), sj) |= ϕ;

– Boolean connectives are handled as usual.

In the sequel, to prove the preservation of properties through the embedding
of biological regulatory networks, we will use a standard equivalence relation on
the states of transition systems, the so-called divergence blind stuttering equiva-
lence (dbs), which have been proved to preserve CTL-X formulas, i.e. the tran-
sition system and its quotient, with respect to the dbs equivalence relation, are
elementary equivalent [10].

Let us recall the definition of a dbs relation R on a transition system (S, T ).
A binary relation R on S is called a divergence blind stuttering (dbs) relation

if, and only if it is symmetric and

r R s⇐⇒

L(r) = L(s)
(r, r′) ∈ T ⇒ ∃s0, s1, . . . , sn finite path , n ≥ 0, (s0 = s)

∧(∀i < n, r R si) ∧ r′ R sn
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It is obvious to show that every dbs relation is transitive. Moreover, as the
case n = 0 is allowed in the second condition, the empty relation is a dbs relation.
Finally, the diagonale relation on S is also a dbs relation, and it is easy to show
that dbs relations are closed under union. Hence, the largest dbs relation exists
and is an equivalence relation noted 'dbs.

Given a transition system (S, T ), its quotient by 'dbs, denoted (S, T )/'dbs ,
is defined by:

– the set of states S/'dbs is the set of equivalence classes of 'dbs, [s] denoting
the equivalence class of s for s state of S

– the set of transitions T/'dbs defined by ([s], [t]) ∈ T/'dbs iff there exists
s′ ∈ [s] and t′ ∈ [t] such that (s, t) ∈ T

– (S, T )/'dbs is provided with the labeling function L/'dbs defined by L/'dbs([s]) =
L(s)

3 BRN logic

In this section, we will present the multivalued discrete approach developed by
R. Thomas [13] for genetic regulatory networks as a logic built over the logic
CTL-X. We will follow the standard approach for presenting a logic, i.e. syntax
(signatures and formulas) and semantics (models and the satisfaction relation).

3.1 Syntax

Signatures. A biological regulatory network is represented by a labeled directed
graph, called interaction graph. Vertices abstract biological entities, as genes
or proteins, and will be called variables. Edges abstract interactions between
variables. When a variable i activates a variable j, variable i can act positively
on j, then there exists an edge from i to j labeled by the sign "+". On the
contrary, when a variable i inhibits a variable j, variable i can act negatively
on j, then there exists an edge from i to j labeled by the sign "-". Moreover,
the action, activation or inhibition, between two variables becomes efficient only
when the level of concentration of the regulator reaches a given threshold. In
the discrete modeling framework of R. Thomas, the concentration levels for the
variable i can take a finite number of values {0, 1, . . . , bi} and thresholds related
to the actions of i are numbered from 1 to bi: the action of i on j is triggered only
if the concentration of i crosses its concentration level. Thus, each interaction
i −→ j is labeled by a sign and a threshold. The knowledge of interactions
between variables, including signs and thresholds, is called the static part of
BRNs and constitutes the elements of signatures for a logic dedicated to BRNs.

Definition 1 (Signature) A BRN-signature is a labeled directed graph G =
〈V, F, Sn, Th〉 where:

1. V is a finite set whose the elements are called variables.
2. F ⊆ V × V denotes the set of edges.
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3. Sn is a mapping from F to {+,−}.
4. Th is a mapping from F to N∗ such that:

∀(i, j) ∈ F ∀l ∈ N∗ ∃k ∈ V (Th(i, j) = l ∧ l 6= 1⇒ (i, k) ∈ F∧Th(i, k) = l−1)

Point 4. gives some restrictions on the way the edges are labeled. If an edge
outgoing from a variable i is labeled by l ≥ 2, then there exist edges outgoing
from i labeled by 1, . . . , l − 1. This well represents the qualitative nature of
thresholds in BRN as used in this paper.

Notation 1 Let G = 〈V, F, Sn, Th〉 be a BRN-signature and i be a variable in
V . G+

i , resp. G
−
i , denotes the set of successors, resp. predecessors, of i in G,

and bi denotes the cardinal of the set of thresholds for i. Formally, we have:

G+
i = {j ∈ V |(i, j) ∈ F}

G−i = {j ∈ V |(j, i) ∈ F}

bi = |{l ∈ N∗ | ∃j ∈ G+
i , Th(i, j) = l}|

Example 1 To illustrate Definition 1, we take as running example a model
inspired from the one of control of immunity in temperate bacteriophage lambda.
This model, proposed by Thieffry and Thomas in [11], contains genes cI and cro:
cI inhibits cro and activates its own synthesis whereas the variable cro inhibits
the expression of both variables, see Figure 1. The associated BRN-signature,
denoted G1 in the sequel, is simply given by:
〈 {cI, cro}, {(cI, cI), (cI, cro), (cro, cI), (cro, cro)},

Sn : {(cI, cI) 7→ +, (cI, cro) 7→ −, (cro, cI) 7→ −, (cro, cro) 7→ −},
Th : {(cI, cI) 7→ 1, (cI, cro) 7→ 1, (cro, cI) 7→ 1, (cro, cro) 7→ 2} 〉

+1 cI cro

−1

−2

−1

Fig. 1. Interaction graph for the cI − cro system

Signature embedding. Biologists can identify small parts issued from a BRN
involving a large number of genes. These parts are assimilated to a biological
function insofar as it can be proven that the biological function is essentially
related to the concentration levels of the variables occurring in the considered
subpart.

Embedding of BRN signatures can formalize such an approach. However,
signature embedding cannot be simple graph embeddings (which is defined by
Conditions 1 and 2 of Definition 2 just below). Indeed, as well as preserving edge
signs (see Condition 2), as the thresholds on edges depend on the properties of
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the graph (a threshold cannot be greater than the number of outgoing edges),
it matters to pay attention to the preservation of the conditions on the thresh-
olds (Conditions 3 and 4). In fact, as thresholds are taken into consideration
in signatures, the key point to carry through the embedding is the preservation
of the equality between thresholds and the numerical order between them. New
intermediate thresholds for a given variable can be introduced when including
a BRN in another one, but relationships between existing thresholds have to be
preserved in the larger one. Finally, a supplementary condition (Condition 5) has
to be added. This condition means the preservation of predecessors in interaction
graphs. This condition can seem very restrictive. However, it is useful to ensure
the preservation of properties inherited from the small BRN to the large BRN
(see the counter-example given in Section 5) which makes fail the preservation
when Condition 5 does not hold. This leads to the following definition:

Definition 2 (Signature embedding) Let G and G′ be BRN-signatures such
that G = 〈V, F, Sn, Th〉 and G′ = 〈V ′, F ′, Sn′, Th′〉. A signature embedding
G→ G′ is an injective mapping σ : V → V ′ such that:

1. ∀i, j ∈ V, (i, j) ∈ F ⇔ (σ(i), σ(j)) ∈ F ′
2. ∀i, j ∈ V, (i, j) ∈ F, Sn(i, j) = Sn′(σ(i), σ(j))
3. ∀i ∈ V,∀j, k ∈ G+

i , Th(i, j) = Th(i, k)⇔ Th′(σ(i), σ(j)) = Th′(σ(i), σ(k))
4. ∀i ∈ V,∀j, k ∈ G+

i , Th(i, j) < Th(i, k)⇔ Th′(σ(i), σ(j)) < Th′(σ(i), σ(k))
5. ∀j ∈ V, ∀k′ ∈ V ′, (k′, σ(j)) ∈ F ′ ⇒ ∃i ∈ V, (i, j) ∈ F ∧ σ(i) = k′

Notation 2 Let σ : G→ G′ be a signature embedding where G = 〈V, F, Sn, Th〉
and G′ = 〈V ′, F ′, Sn′, Th′〉 and let ω a set of variables in V , σ(ω) denotes the
set {σ(i) | i ∈ ω}.

Example 2 Figure 2 presents the BRN-signature G2, sharing with G1 both vari-
ables cI and cro, and containing a new variable N . According to Definition 1,
a signature embedding σid between {cI, cro} and {cI, cro,N} can be defined:
σid(cI) = cI and σid(cro) = cro. Conditions 1 and 2 are clearly verified (all edges
of G1 are in G2 labeled with the same sign). Condition 3 requires that the equality
between thresholds for outgoing edges in G1 is preserved in G2, it is verified since
only Th(cI, cI) = Th(cI, cro) in G1 and we have Th′(cI, cI) = Th′(cI, cro) in
G2. Condition 4, which requires that the order between thresholds for outgoing
edges in G1 is preserved in G2, is also verified. For instance, in G1, cro has two
outgoing edges (cro, cI) and (cro, cro) with Th(cro, cI) < Th(cro, cro). In G2,
we have Th′(cro, cI) < Th′(cro, cro). Condition 5 is also verified (cI and cro in
G2 have no new predecessors with respect to G1).

Roughly speaking, we can link two BRN-signatures by a signature embedding
when the addition of new variables has only the effect of shifting the thresholds
issued from the inherited variables.

Formulas. Formulas for BRN are simply CTL-X formulas whose atomic formu-
las describe comparisons between a concentration level of a variable with some
threshold values.



8 Mbarka Mabrouki, Marc Aiguier, Jean-Paul Comet, and Pascale Le Gall

+2 cI
−1 −2

cro −3N

−2

−1

Fig. 2. BRN-signature G2

Definition 3 (BRN Formulas) Let G = 〈V, F, Sn, Th〉 be a BRN-signature.
Formulas over G are CTL-X formulas whose atomic formulas are of the form
(i ∼ l) where i ∈ V , l ∈ {0, . . . , bi} and ∼∈ {=, <,>}.

We denote by Atom(G) the set of atomic formulas built on G and by Sen(G)
the set of formulas over G.

In the sequel, i ≥ l (resp. i ≤ l) will denote the formula i = l ∨ i > l (resp.
i = l ∨ i < l).

Signature embeddings obviously rename variables and thresholds occurring
in atomic formulas. However, the threshold renaming is not so simple. Indeed,
the presence of new variables makes side effects on the thresholds by shifting
them. This gives rise to the following definition:

Definition 4 (Formula renaming) Let σ : G→ G′ be a signature embedding
with G = 〈V, F, Sn, Th〉 and G′ = 〈V ′, F ′, Sn′, Th′〉. For all i ∈ V , let us note
σi : {0, 1, . . . , bi} → {0, 1, . . . , bσ(i)} the mapping defined by :

– σi(0) = 0
– For all l 6= 0, σi(l) = Th′(σ(i), σ(j)) with j any arbitrary variable such that
j ∈ G+

i and Th(i, j) = l

Let us note σ : Atom(G)→ Sen(G′) the mapping defined by:

– For all (i = l) ∈ Atom(G) with l 6= bi, σ(i = l) = σ(i) ≥ σi(l)∧σ(i) < σi(l+ 1)
– For all (i = bi) ∈ Atom(G), σ(i = bi) = σ(i) ≥ σi(bi)
– For all (i > l) ∈ Atom(G), σ(i > l) = σ(i) ≥ σi(l + 1)
– For all (i < l) ∈ Atom(G), σ(i < l) = σ(i) < σi(l)

Let us note σ] the canonical extension of the signature embedding σ on for-
mulas in Sen(G) defined as follows:

– For p ∈ Atom(G), σ](p) = σ(p),
– For other formulas, Boolean connectives and temporal operators are pre-

served.

The definition explains how to convert formulas in Sen(G) into formulas in
Sen(G′) by following the simple idea of translating a threshold into an interval
of possible values.
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3.2 Semantics

Models. Each variable i in a BRN-signature G is a genetic entity which is charac-
terized at a given point in time by a concentration level. Dealing with regulatory
networks with thresholds whose the set of nodes is finite, the state space gener-
ated from G is finite and defined by:

Definition 5 (State) Let G = 〈V, F, Sn, Th〉 be a BRN-signature. The state
space SG of G is the set of mappings s : V → N such that for every i ∈ V ,
s(i) ∈ {0, . . . , bi}.

Example 3 In the BRN-signature G1 of Example 1, Variables cI and cro have,
respectively 2 and 3 possible concentration levels: 0 or 1, and 0, 1 or 2. Therefore,
The state space for G1 is SG1 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.

The concentration level of each variable i ∈ V of a given BRN-signature G,
evolves over time depending on the concentration level of its resources (i.e. sets
of i’s predecessors in G which have reached a concentration level to affect i’s one
by making it increase or decrease). However, neither G nor the concentration
level of i’s resources gives clues to decide the concentration level that i can
reach. This is a degree of freedom of BRN-signatures which gives rise to a class
of possible G-models, so-called dynamics of G. All these possible G-models do
not correspond to actual biological functions. This is by biological knowledge
described by CTL-X properties that we can cut down in the class of all possible
G-models. Formally, G-models are defined as follows:

Definition 6 (Resources) Let G be a BRN-signature. The set of resources
RG,i(s) of a variable i at the state s ∈ SG is defined by:

RG,i(s) =

{j ∈ G
−
i |(Sn(j, i) = + and s(j) ≥ Th(j, i))}

∪
{j ∈ G−i |(Sn(j, i) = − and s(j) < Th(j, i))}

Hence, a resource is the presence of an activator or the absence of an inhibitor.

Example 4 Figure 3 gives the sets of resources for the three variables cI, cro
and N in SG1 and SG2 .

Definition 7 (G-models) Let G = 〈V, F, Sn, Th〉 be a BRN-signature and let
κ = {(i, w) | i ∈ V ∧ w ⊆ G−i } be the set of all subsets of predecessors in
G for every variable i ∈ V . A G-model is a mapping p : κ → N such that:
∀(i, w) ∈ κ, p((i, w)) ∈ {0, . . . , bi}.

Example 5 From the BRN-signature G2 of Figure 2, we have the following
set κ:

κ =


{(cI, ∅), (cI, {cI}), (cI, {cro}), (cI, {cI, cro})}

∪
{(cro, ∅), (cro, {cI}), (cro, {cro}), (cro, {cI, cro})}

∪
{(N, ∅), (N, {cI}), (N, {cro}), (N, {cI, cro})}
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cI cro RG,cI RG,cro

0 0 {cro} {cI, cro}
0 1 ∅ {cI, cro}
0 2 ∅ {cI}
1 0 {cI, cro} {cro}
1 1 {cI} {cro}
1 2 {cI} ∅

cI cro N RG′,cI RG′,cro RG′,N

0 0 0 {cro} {cI, cro} {cI, cro}
0 1 0 ∅ {cI, cro} {cI, cro}
0 2 0 ∅ {cI, cro} {cI}
0 3 0 ∅ {cI} {cI}
1 0 0 {cro} {cI, cro} {cro}
1 1 0 ∅ {cI, cro} {cro}
1 2 0 ∅ {cI, cro} ∅
1 3 0 ∅ {cI} ∅
2 0 0 {cI, cro} {cro} {cro}
2 1 0 {cI} {cro} {cro}
2 2 0 {cI} {cro} ∅
2 3 0 {cI} ∅ ∅

Fig. 3. Resources of cI, cro and N in SG1 (left) and in SG2 (right)

From the value of the concentration levels for cI, cro and N , a possible G2-model
p2 is given in Figure 4 (left).

Signature embeddings σ : G → G′ have a counterpart on models which is
expressed by a classic forgetful mapping. Here also, some difficulties occur due
to some restrictions to make on thresholds from the “richer” model defined on G′
to the “poorer” one defined on G. This then leads to the following definition:

Definition 8 (Reduced model) Given a signature embedding σ : G → G′

and a G′-model p′, the reduced G-model p from p′, denoted p′|σ , is defined as
follows: ∀(i, w) ∈ κ,

p((i, w)) =


Th(i, j) if it exists j in V such that

Th′(σ(i), σ(j)) = max(i,k)∈F {Th′(σ(i), σ(k)) |
Th′(σ(i), σ(k)) ≤ p′((σ(i), σ(w)))}

0 otherwise

Example 6 Figure 4 (right) gives the reduced G1-model p1 of p2 along the sig-
nature embedding given in Example 2.

resource ω′ p2((cI, ω′)) p2((cro, ω
′)) p2((N, ω′))

∅ 0 0 0
{cI} 2 2 0
{cro} 2 1 0

{cI,cro} 2 3 0

resource ω p1((cI, ω)) p1((cro, ω))

∅ 0 0
{cI} 1 1
{cro} 1 1

{cI,cro} 1 2

Fig. 4. A G2-model p2 (left) and its reduced G1-model p1 (right)
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From a G-model p, a transition system (SG, T ) can be generated where the
transitions in T give the state evolution as described in p. Here, two possibilities
can occur. We make evolve either many variables directly to their concentration
level specified by p, or one variable i and only by one unit in the direction of
p((i, ω)) where ω is the set of resources of i at the current state. These two possi-
bilities are respectively called synchronous and asynchronous description of the
G-model p. Here, we follow the asynchronous description because in the nature,
it is unlikely that, in vivo, several variables cross a threshold simultaneously [12].

Definition 9 (Asynchronous transition system) Let G = 〈V, F, Sn, Th〉 be
a BRN-signature and let p be a G-model. The asynchronous transition system
generated from p is a directed graph GTA((G, p)) = (SG, T ) such that:

– ∀s ∈ SG, (s, s) ∈ T ⇔ ∀i ∈ V, s(i) = p((i, RG,i(s)))
– ∀s 6= s′ ∈ SG, (s, s′) ∈ T if, and only if:
• there exists i ∈ V , such that

s′(i) =
{
s(i) + 1 and s(i) < p((i, RG,i(s)))
s(i) - 1 and s(i) > p((i, RG,i(s)))

• and s′(j) = s(j) for every j ∈ V \ {i}.
Example 7 Figure 5 gives from the left to the right, the asynchronous transition
systems GTA((G1, p1)) and GTA((G2, p2)) generated from p1 and p2.

10

11 12

02

01

00 000

100

200

210 220

110

010

120

130

230

030

020

Fig. 5. Asynchronous transition systems GTA((G1, p1)) and GTA((G2, p2)). Colored
boxes represent the 'dbs equivalence classes of GTA((G2, p2)) – see Section 4

Satisfaction relation. The asynchronous transition system (SG, T ) generated
from a G-model p is a transition system following the definition in Section 2.
However, to satisfy CTL formulas, we have to manipulate Kripke frames and
then we need to precise the labeling function L : SG → 2Atom(G). Given a state
s in SG,

L(s) = {i > l, i < l′, i = l′′ | i ∈ V, l ∈ {0, 1, . . . , bi − 1}, l′ ∈ {1, 2, . . . , bi},

l′′ ∈ {0, 1, . . . , bi}, s(i) > l, s(i) < l′, s(i) = l′′}
Therefore, the satisfaction relation of a formula ϕ over a BRN-signature G

for a G-model p is then defined by: p |= ϕ ⇐⇒ GTA((G, p)) |= ϕ following the
definitions given in Section 2.
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4 Property preservation along signature embeddings

In this section, we show that given a signature embedding σ : G → G′ and a
G′-model p′, p′ and p′|σ are elementary equivalent on formulas in Sen(G) up to σ.
This is stated by the following result.

Theorem 1. For every signature embedding σ : G→ G′, for every G′-model p′
and for every formula ϕ ∈ Sen(G),

p′ |= σ](ϕ) ⇐⇒ p′|σ |= ϕ

Proof (Sketch). Let us consider a signature embedding σ : G → G′, a G′-
model p′ for the BRN-signatureG′, its associated asynchronous transition system
(SG′ , T ′) = GTA((G′, p′)) and a formula ϕ ∈ Sen(G). Let us note (SG, T ) =
GTA(G, p′|σ). Start by defining the mapping B : SG → 2SG′ as follows: for every
s ∈ SG, B(s) is the set of states s′ in SG′ verifying for every i in V :

– if s(i) = bi, then
s′(σ(i)) ≥ σi(bi)

– else,
s′(σ(i)) ≥ σi(s(i)) ∧ s′(σ(i)) < σi(s(i) + 1)

The proof of Theorem 1 rests on the following intermediate propositions. The
proofs of these propositions can be found in [1].

Proposition 1 The mapping B makes a partition of SG′ , i.e.

1. ∀s, s′ ∈ S, B(s) ∩B(s′) = ∅, and
2.
⋃
s∈SG Bs = SG′ .

Note P = {B(s)|s ∈ SG}. Then, we have:

Proposition 2 P is a dbs equivalence.

It then remains to prove:

Proposition 3 (SG′ , T ′)/'dbs and (SG, T ) are isomorphic.

It is well known that isomorphic models are elementary equivalent (i.e. they
satisfy the same set of properties). Therefore, by applying the result of [10], we
can conclude that GTA((G′, p′)) and GTA((G, p)) are elementary equivalent on
formulas over G up to formula renaming resulting from σ.

Some readers will recognize the so-called satisfaction condition of the insti-
tution framework [8]. Hence, this BRN-logic based on signature embeddings is
then an institution.

Example 8 For the current example, the equivalence classes of 'dbs in G2 are
highlighted in Figure 5 by colored boxes.
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5 Counter-example justifying our restrictive notion of
signature embeddings

In this section we give a counter-example to show the significance of Condi-
tion 5 (preservation of predecessors) of Definition 2. Let us consider both BRN-
signatures G and G′ of figure 6. It is possible to construct an injective mapping
σ : V −→ V ′ satisfying Conditions 1, 2, 3, and 4 of Definition 2 with σ(a) = a.
For the signature G′ we consider the model p′ given in Figure 7 (left) from

a−1
−1

a b−1

Fig. 6. Counter-example: we consider an embedding not satisfying Condition 5 in Def-
inition 2

which we deduce the reduced G-model p = p′|σ from p′ (see Figure 7-right), and
we consider the asynchronous transition systems generated from p and p′.

resource ω′ p′((a, ω′)) p′((b, ω′))

∅ 0 0
{a} 1
{b} 1
{a, b} 1

resource ω p((a, ω))

∅ 0
{a} 1

0 101 11

00 10

Fig. 7. a G′-model p′ and its reduced G-model p.

It is then easy to see that models p′ and p do not satisfy the same formulas of
CTL-X. For example the formula AG(AF (a = 0)) which means that the system
will infinitely often pass through a state where a = 0 is true, is satisfied by p
but not by p′.

6 Conclusion

We have presented the multivalued discrete approach for biological regulatory
networks under the classical form of a logical formalism. BRN-signatures are
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made of graphs, denoting the static part of BRN. Formulas are CTL-X formulas
over atoms expressing comparisons between concentration levels of gene products
with some abstract discrete values. Models are asynchronous transition systems
deduced from the knowledge of parametrization explicating towards which con-
centration level tends a variable when it is under the influence of other ones.
Lastly, the satisfaction relation is simply deduced from the one defined for the
CTL-X formalism. In order to study how properties expressed on a small BRN
are preserved or not when embedding it within a larger one, we have equipped
our BRN formalism with signature embeddings. Their main particularity is that
they capture the fact that a concentration level or threshold relative to a net-
work is converted into an interval of concentration levels. We have proved that
CTL-X properties are preserved along such signature embeddings.

We plan to pursue our work by investigating some other conditions which
will allow us to go further in the property preservation while keeping a mean-
ing for biological experts. In particular, we are currently investigating under
which weaker embedding condition, a weaker set of CTL properties can be still
preserved.
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