Skip to main content

On a Hybrid Symbolic-Connectionist Approach for Modeling the Kinematic Robot Map - and Benchmarks for Computer Algebra

  • Conference paper
Intelligent Computer Mathematics (CICM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5144))

Included in the following conference series:

  • 745 Accesses

Abstract

The kinematics model of a robot arm (we are considering open kinematic chains) is described by a corresponding robot map having the configuration space as its domain and the workspace as codomain. In other words, the robot map assigns to every configuration of the joint parameters a unique point of the workspace of the robot arm. We briefly discuss the general introduction of the robot map where the parameters of a translational joint are represented by points of the real line and the parameters of a rotational joint by points of the unit circle in the real plane, respectively. Thus, in general, a concrete joint configuration (point of the configuration space) is an element of an abelian Lie group being a direct product of some copies of the real line and the unit circle. The position and orientation of the endeffector of a robot arm is represented by an element of the euclidean motion group of real 3-space. The standard problems like the direct kinematics problem, the inverse kinematics problem and the singularity problem can easily be defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buchberger, B.: Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems (An Algorithmical Criterion for the Solvability of Algebraic Systems of Equations). Aequationes mathematicae 4/3, 374–383 (1970); English translation In: Buchberger, B., Winkler, F.(eds.) Gröbner Bases and Applications, Proceedings of the International Conference ‘33 Years of Gröbner Bases’, RISC, Austria, London Mathematical Society Lecture Note Series, vol. 251, pp. 535–545. Cambridge University Press, Cambridge (1998)

    Article  MathSciNet  Google Scholar 

  2. Buchberger, B.: Gröbner bases: An algorithmic method in polynomial ideal theory. In: Bose, N.K. (ed.) Multidimensional Systems Theory, pp. 184–232. D.Reidel Publ. Comp., Dordrecht-Boston-Lancaster (1985)

    Google Scholar 

  3. Buchberger, B.: Applications of Gröbner bases in non-linear computational geometry. Rice, J.R.(ed.) Mathematical Aspects of Scientific Software 14, 59–87 (1987)

    Google Scholar 

  4. Buchberger, B., Collins, G., Kutzler, B.: Algebraic methods for geometric reasoning. Ann. Rev. Comput. Sci. 3, 85–119 (1988)

    Article  MathSciNet  Google Scholar 

  5. Pfalzgraf, J.: On geometric and topological reasoning in robotics. Annals of Mathematics and Artificial Intelligence 19, 279–318 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Pfalzgraf, J.: Modeling connectionist network structures: Some geometric and categorical aspects. Annals of Mathematics and AI 36, 279–301 (2002)

    MATH  MathSciNet  Google Scholar 

  7. Pfalzgraf, J.: Modeling connectionist networks: categorical, geometric aspects (towards ‘homomorphic learning’). In: Dubois, D.M. (ed.) Proceedings CASYS 2003. American Institute of Physics, AIP Conference Proceedings, Liège, Belgium, August 11-16, 2003, vol. 718 (2004) (Received a Best Paper Award)

    Google Scholar 

  8. Angeles, J.: Rational Kinematics. Springer, New York-Berlin (1988)

    MATH  Google Scholar 

  9. Craig, J.: Introduction to Robotics. Addison-Wesley Publ.Co, Reading (1986)

    Google Scholar 

  10. Paul, R.: Robot Manipulators. MIT Press, Cambridge Massachusetts (1982)

    Google Scholar 

  11. André, J.: On finite noncommutative affine spaces. In: Hall Jr., M., van Lint, J.H. (eds.) Combinatorics, 2nd edn. Proceedings of an Advanced Inst. on Combinat (Breukelen), pp. 65–113, Amsterdam Math. Centrum. (1974)

    Google Scholar 

  12. André, J.: Coherent configurations and noncommutative spaces. Geometriae Dedicata 13, 351–360 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  13. André, J.: Endliche nichtkommutative Geometrie (Lecture Notes). Annales Universitatis Saraviensis (Ser. Math.) 2, 1–136 (1988)

    Google Scholar 

  14. André, J.: Configurational conditions and digraphs. Journal of Geometry 43, 22–29 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. André, J., Ney, H.: On Anshel-Clay-Nearrings. In: Proc. Intern. Conf. Nearrings and Nearfields, Oberwolfach (1991)

    Google Scholar 

  16. Pfalzgraf, J.: On a model for noncommutative geometric spaces. Journal of Geometry 25, 147–163 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pfalzgraf, J.: On geometries associated with group operations. Geometriae Dedicata 21, 193–203 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pfalzgraf, J.: Sobre la existencia de espacios semiafines y finitos. In: Archivos de Investigación, vol. 3(1). (Proceedings) Instituto Profesional de Chillán, Chile (1985)

    Google Scholar 

  19. Gehrke, W., Pfalzgraf, J.: Computer-aided construction of finite geometric spaces: Automated verification of geometric constraints. Journal of Automated Reasoning 26, 139–160 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pfalzgraf, J.: On a category of geometric spaces and geometries induced by group actions. Ukrainian Jour. Physics 43(7), 847–856 (1998)

    MathSciNet  Google Scholar 

  21. Collins, G.E.: Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

    Google Scholar 

  22. Hong, H.: Improvements in c.a.d.–based quantifier elimination (PhD thesis). Technical report, The Ohio State University, Columbus, Ohio (1990)

    Google Scholar 

  23. Wu, W.: Basic principles of mechanical theorem proving in elementary geometries. J. Automated Reasoning 2, 221–252 (1986)

    Article  MATH  Google Scholar 

  24. Wang, D.: Elimination procedures for mechanical theorem proving in geometry. Annals of Mathematics and Artificial Intelligence 13, 1–24 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pfalzgraf, J.: A category of geometric spaces: Some computational aspects. Annals of Mathematics and Artificial Intelligence 13, 173–193 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Serge Autexier John Campbell Julio Rubio Volker Sorge Masakazu Suzuki Freek Wiedijk

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pfalzgraf, J. (2008). On a Hybrid Symbolic-Connectionist Approach for Modeling the Kinematic Robot Map - and Benchmarks for Computer Algebra. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds) Intelligent Computer Mathematics. CICM 2008. Lecture Notes in Computer Science(), vol 5144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85110-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85110-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85109-7

  • Online ISBN: 978-3-540-85110-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics