Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 158))

Summary

We show some coincidences of Voronoi diagrams in a quantum state space with respect to some distances. This means a computational geometry interpretation of a structure of a quantum state space. More properly, we investigate the Voronoi diagrams with respect to the divergence, Fubini-Study distance, Bures distance, geodesic distance and Euclidean distance.

As an application of it, we explain an effective algorithm to compute the Holevo capacity of one-qubit quantum channel. The effectiveness of the algorithm is supported by the coincidence of Voronoi diagrams. Moreover, our result provides insights into the applicability of the same method to a higher level system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, S., Nagaoka, H.: Methods of Information Geometry. AMS & Oxford University Press (2000)

    Google Scholar 

  2. Bennet, C.H., Brassard, G.: Quantum cryptography: Public key distribution and cotin tossing. In: Proceedings of IEEE Int. Conf. Computers, Systems and Signal Processing, pp. 175–179, Bangalore, India (1984)

    Google Scholar 

  3. Buckley, C.: A divide-and-conquer algorithm for computing 4-dimensional convex hulls. In: Noltemeier, H. (ed.) CG-WS 1988. LNCS, vol. 333, pp. 113–135. Springer, Heidelberg (1988)

    Google Scholar 

  4. Bures, D.: An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite w *-algebras. Trans. Amer. Math. Soc. 135, 199–212 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  5. Byrd, M.S., Khaneja, N.: Characterization of the positivity of the density matrix in terms of the coherence vector representation. Phys. Rev. A 68(062322) (2003)

    Google Scholar 

  6. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Berlin (1987)

    MATH  Google Scholar 

  7. Gruska, J.: Quantum Computing. McGraw-Hill, New York (1999)

    Google Scholar 

  8. Hayashi, M.: Asymptotic estimation theory for a finite-dimensional pure state model. Journal of Physics A: Mathematical and General 31, 4633–4655 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hayashi, M., Imai, H., Matsumoto, K., Ruskai, M.B., Shimono, T.: Qubit channels which require four inputs to achieve capacity: Implications for additivity conjectures. QUANTUM INF.COMPUT 5, 13 (2005), http://arxiv.org/abs/quant-ph/0403176

  10. Holevo, A.: Bounds for the quantity of information transmitted by a quantum communication channel. Problemly Peredachi Informatsii 9(3), 3–11 (1973); English Translation: Probl. Inform. Transm. 9, 177–183 (1975)

    MATH  MathSciNet  Google Scholar 

  11. Holevo, A.: On the capacity of quantum communicaion channel. Problemly Perecdochi Informatsii 15(4), 3–11 (1979); English translation: Probl. Inform. Transm. 15, 247–253 (1973)

    Google Scholar 

  12. Holevo, A.S.: The capacity of quantum channel with general signal states. IEEE Trans. Inf. Theory 44(1), 269–273 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kato, K.: Voronoi Diagrams for Quantum States and Its Application to a Numerical Estimation of a Quantum Channel Capacity. PhD thesis, University of Tokyo (2008)

    Google Scholar 

  14. Kato, K., Imai, H., Imai, K.: Smallest enclosing ball problem in a quantum state space and its application (to appear, 2008)

    Google Scholar 

  15. Kato, K., Oto, M., Imai, H., Imai, K.: Voronoi diagrams for pure 1-qubit quantum states. In: Proceedings of International Symposium on Voronoi Diagram, pp. 293–299, Seoul, Korea (2005), http://arxiv.org/abs/quant-ph/0604101

  16. Kato, K., Oto, M., Imai, H., Imai, K.: On a geometric structure of pure multi-qubit quantum states and its applicability to a numerical computation. In: Proceedings of International Symposium on Voronoi Diagram, pp. 48–53, Banff, Canada (2006), http://arxiv.org/abs/quant-ph/0607029

  17. Kato, K., Oto, M., Imai, H., Imai, K.: Voronoi diagrams and a numerical estimation of a quantum channel capacity. In: 2nd Doctoral Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS 2006), pp. 69–76, Mikulov, Czech (October 2006), http://arxiv.org/abs/quant-ph/0611146

  18. Kimura, G.: The Bloch vector for n-level systems. Physics Letter A 314(339), (2003)

    Google Scholar 

  19. Muta, H., Kato, K.: Degeneracy of angular Voronoi diagram. In: Proceedings of 4th International Symposium on Voronoi Diagram in Science and Engineering, Wales, UK, pp. 288–293 (2007)

    Google Scholar 

  20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Infomation. Cambridge Univ. Press, Cambridge (2000)

    Google Scholar 

  21. Ohya, M., Petz, D., Watanabe, N.: On capacities of quantum channels. Prob. Math. Stats. 17, 170–196 (1997)

    MathSciNet  Google Scholar 

  22. Onishi, K., Imai, H.: Voronoi diagram in statistical parametric space by Kullback-Leibler divergence. In: Proceedings of the 13th ACM Symposium on Computational Geometry, pp. 463–465 (1997)

    Google Scholar 

  23. Onishi, K., Imai, H.: Voronoi diagrams for and exponential family of probability distributions in information geometry. In: Japan-Korea Joint Workshop on Algorithms and Computation, Fukuoka, pp. 1–8 (1997)

    Google Scholar 

  24. Osawa, S., Nagaoka, H.: Numerical experiments on the capacity of quantum channel with entangled input states. IECE Trans. Fund. E84-A(10), 2583–2590 (2001)

    Google Scholar 

  25. Oto, M., Imai, H., Imai, K.: Computational geometry on 1-qubit quantum states. In: Proceedings of International Symposeum on Voronoi Diagram, Tokyo, Japan, pp. 145–151 (2004)

    Google Scholar 

  26. Oto, M., Imai, H., Imai, K., Shimono, T.: Computational geometry on 1-qubit states and its application. In: ERATO Quantum Information Science (EQIS 2004), pp. 156–157 (2004)

    Google Scholar 

  27. Petz, D., Sudar, C.: Geometries of quantum states. J. Math. Phys. 37(6), 2662–2673 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  28. Preparata, F., Shamos, M.: Computational Geometry: An Introduction. Springer, New York (1985)

    Google Scholar 

  29. Renka, R.J.: Algorithm 772: Stripack: Delaunay triangulation and Voronoi diagram on the surface of a sphere. ACM Transactions on Mathematical Software 23(3), 416–434 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Schumacher, B., Westmoreland, M.: Sending classical information via noisy quantum channels. Phys. Rev. A 56(131) (1997)

    Google Scholar 

  31. Seidel, R.: Constructing higher-dimensional convex hulls at logarithmic cost perface. In: Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing (STOC 1986), pp. 404–413. ACM, New York (1986)

    Chapter  Google Scholar 

  32. Shor, P.: Equivalence of additivity questions in quantum information theory. Commu. Math. Phys. 246(3), 473 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kato, K., Oto, M., Imai, H., Imai, K. (2009). Computational Geometry Analysis of Quantum State Space and Its Applications. In: Gavrilova, M.L. (eds) Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. Studies in Computational Intelligence, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85126-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85126-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85125-7

  • Online ISBN: 978-3-540-85126-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics