Skip to main content

A Methodology for Automated Cartographic Data Input, Drawing and Editing Using Kinetic Delaunay/Voronoi Diagrams

  • Chapter
Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 158))

  • 1432 Accesses

Summary

This chapter presents a methodology for automated cartographic data input, drawing and editing. This methodology is based on kinematic algorithms for point and line Delaunay triangulation and the Voronoi diagram. It allows one to automate some parts of the manual digitization process and the topological editing of maps that preserve map updates. The manual digitization process is replaced by computer assisted skeletonization using scanned paper maps. We are using the Delaunay triangulation and the Voronoi diagram in order to extract the skeletons that are guaranteed to be topologically correct. The features thus extracted as object centrelines can be stored as vector maps in a Geographic Information System after labelling and editing. This research work can also be used for updates from sources that are either paper copy maps or digital raster images. A prototype application that was developed as part of the research has been presented.

We also describe two reversible line-drawing methods for cartographic applications based on the kinetic (moving-point) Voronoi diagram. Our objectives were to optimize the user’s ability to draw and edit the map, rather than to produce the most efficient batch-oriented algorithm for large data sets, and all our algorithms are based on local operations (except for basic point location). Because the deletion of individual points or line segments is a necessary part of the manual editing process, incremental insertion and deletion is used. The original concept used here is that, as a curve (line) is the locus of a moving point, then segments are drawn by maintaining the topology of a single moving point (abbreviated as MP hereafter, or the “pen”) as it moves through the topological network (visualized as either the Voronoi diagram or Delaunay triangulation). This approach also has the interesting property that a “log file” of all operations may be preserved, allowing reversion to previous map states, or “dates”, as required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amenta, N., Bern, M., Eppstein, D.: The crust and the β-skeleton: Combinatorial curve reconstruction. Graphical models and image processing: GMIP 60(2), 125–135 (1998)

    Article  Google Scholar 

  2. Anton, F., Gold, C.: An iterative algorithm for the determination of Voronoi vertices in polygonal and non-polygonal domains. In: Proceedings of the Canadian Conference on Computational Geometry, Kingston, Canada, pp. 257–262 (1997)

    Google Scholar 

  3. Anton, F., Snoeyink, J., Gold, C.: An iterative algorithm for the determination of Voronoi vertices in polygonal and non-polygonal domains on the plane and the sphere. In: 14th European Workshop on Computational Geometry (1998)

    Google Scholar 

  4. Anton, F., Mioc, D., Fournier, A.: 2D image reconstruction using natural neighbour interpolation. The Visual Computer 17(3), 134–146 (2001)

    Article  MATH  Google Scholar 

  5. Aurenhammer, F.: Voronoi diagramsa survey of a fundamental geometric data structure. ACM Computing Surveys (CSUR) 23(3), 345–405 (1991)

    Article  Google Scholar 

  6. Bagli, S., Soille, P.: Morphological automatic extraction of coastline from pan-european landsat tm images. In: Proceedings of the Fifth International Symposium on GIS and Computer Cartography for Coastal Zone Management, vol. 3, pp. 58–59 (2003)

    Google Scholar 

  7. Bernard, T.M., Manzanera, A.: Improved low complexity fully parallel thinning algorithm. In: ICIAP 1999: Proceedings of the 10th International Conference on Image Analysis and Processing, p. 215. IEEE Computer Society, Washington (1999)

    Chapter  Google Scholar 

  8. Bo, G., Delleplane, S., Laurentiis, R.D.: Coastline extraction in remotely sensed images by means of texture features analysis. In: Geoscience and Remote Sensing Symposium, IGARSS 2001, Sydney, NSW, Australia, vol. 3, pp. 1493–1495 (2001)

    Google Scholar 

  9. Borgefors, G.: Distance transformations in arbitrary dimensions. Computer Vision, Graphics, and Image Processing 27(3), 321–345 (1984)

    Article  Google Scholar 

  10. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(8), 790–799 (1995)

    Article  Google Scholar 

  11. Comaniciu, D., Meer, P.: Robust analysis of feature spaces: color image segmentation. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR 1997), pp. 750–755. IEEE Computer Society, Washington (1997)

    Chapter  Google Scholar 

  12. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis Machine Intelligence 24(5), 603–619 (2002)

    Article  Google Scholar 

  13. Devillers, O.: On deletion in Delaunay triangulations. In: Proceedings of the fifteenth annual symposium on Computational geometry, pp. 181–188 (1999)

    Google Scholar 

  14. Di, K., Wang, J., Ma, R., Li, R.: Automatic shoreline extraction from high-resolution ikonos satellite imagery. In: Proceeding of ASPRS 2003 Annual Conference, vol. 3., Anchorage, Alaska (2003)

    Google Scholar 

  15. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Systematic Zoology 18(3), 259–278 (1969)

    Article  Google Scholar 

  16. Gold, C.: Spatial Data Structures: the Extension from One to Two Dimensions. LF Pau (ad.), Mapping and Spatial Modelling for Navigation, NATO ASI Series F 65, 11–39 (1990)

    Google Scholar 

  17. Gold, C.M.: Crust and anti-crust: A one-step boundary and skeleton extraction algorithm. In: Symposium on Computational Geometry, pp. 189–196. ACM Press, New York (1999)

    Google Scholar 

  18. Gold, C.M.: An object-based dynamic spatial data model, and its applications in the development of a user-friendly digitizing system. In: Proceedings of the Fifth International Symposium on Spatial Data Handling, Charleston, pp. 495–504 (1992)

    Google Scholar 

  19. Gold, C.M.: Three approaches to automated topology, and how computational geometry helps. In: Proceedings of the Sixth International Seminar on Spatial Data Handling, Edinburgh, Scotland, pp. 145–158 (1994)

    Google Scholar 

  20. Gold, C., Remmele, P., Roos, T.: Voronoi diagrams of line segments made easy. Proc. 7th Canad. Conf. Comput. Geom, pp. 223–228 (1995)

    Google Scholar 

  21. Gold, C., Charters, T., Ramsden, J.: Automated contour mapping using triangular element data structures and an interpolant over each irregular triangular domain. In: Proceedings of the 4th annual conference on Computer graphics and interactive techniques, pp. 170–175 (1977)

    Google Scholar 

  22. Gold, C.M., Snoeyink, J.: A one-step crust and skeleton extraction algorithm. Algorithmica 30(2), 144–163 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gold, C.M., Thibault, D.: Map generalization by skeleton retraction. In: Proceedings of the 20th International Cartographic Conference (ICC), Beijing, China, pp. 2072–2081 (August 2001)

    Google Scholar 

  24. Gonzalez, R.C., Woods, R.E.: Digital Image Procesisng, 2nd edn. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

  25. Green, P., Sibson, R.: Computing dirichlet tessellations in the plane. The Computer Journal 21(2), 168–173 (1977)

    MathSciNet  Google Scholar 

  26. Guibas, L., Stolfi, J.: Primitives for the manipulation of general subdivisions and the computation of voronoi diagrams. ACM Transactions on Graphics 4(2), 74–123 (1985)

    Article  MATH  Google Scholar 

  27. Guibas, L.: Kinetic data structures: A state of the art report (1998)

    Google Scholar 

  28. Guibas, L., Mitchell, J., Roos, T.: Voronoi diagrams of moving points in the plane.  570, 113–125 (1992)

    Google Scholar 

  29. Held, M.: VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments. Computational Geometry: Theory and Applications 18(2), 95–123 (2001)

    MATH  MathSciNet  Google Scholar 

  30. Imai, T.: A Topology Oriented Algorithm for the Voronoi Diagram of Polygons. In: Proceedings of the 8th Canadian Conference on Computational Geometry table of contents, pp. 107–112 (1996)

    Google Scholar 

  31. Jones, C., Bundy, G., Ware, J.: Map generalization with a triangulated data structure. CARTOGR GEOGRAPH INF SYST. 22(4), 317–331 (1995)

    Google Scholar 

  32. Jones, C., Ware, J.: Proximity Search with a Triangulated Spatial Model. The Computer Journal 41(2), 71 (1998)

    Article  MATH  Google Scholar 

  33. Karavelas, M.: A robust and efficient implementation for the segment Voronoi diagram. In: International Symposium on Voronoi Diagrams in Science and Engineering (VD 2004), pp. 51–62 (2004)

    Google Scholar 

  34. Kasturi, R., Fernandez, R., Amlani, M.L., chun Feng, W.: Map data processing in geographic information systems. Computer 22(12), 10–21 (1989)

    Article  Google Scholar 

  35. Lee, K.H., Cho, S.B., Choy, Y.C.: A knowledge-based automated vectorizing system for geographic information system. In: ICPR 1998: Proceedings of the 14th International Conference on Pattern Recognition, vol. 2, p. 1546. IEEE Computer Society, Washington (1998)

    Google Scholar 

  36. Liu, H., Jezek, K.C.: A complete high-resolution coastline of antarctica extracted from orthorectified radarsat sar imagery. Photogrammetric Engineering and Remote Sensing 70(5), 605–616 (2004)

    Google Scholar 

  37. Mioc, D., Anton, F., Gold, C., Moulin, B.: Spatio-temporal change representation and map updates in a dynamic Voronoi data structure. In: Proceedings of the Eight International Symposium on Spatial Data Handling, Vancouver, Canada, pp. 441–452 (1998)

    Google Scholar 

  38. Mioc, D., Anton, F., Gold, C., Moulin, B.: Time Travel. Visualization in a Dynamic Voronoi Data Structure. Cartography and Geographic Information Science 26(2) (1999)

    Google Scholar 

  39. Mostafavi, M., Gold, C., Dakowicz, M.: Dynamic Voronoi/Delaunay Methods and Applications. Computers and Geosciences 29(4), 523–530 (2003)

    Article  Google Scholar 

  40. Mioc, D., Anton, F., Gold, C.M., Moulin, B.: Map updates in a dynamic Voronoi data structure. In: ISVD, pp. 264–269 (2006)

    Google Scholar 

  41. Ogniewicz, R.L.: Skeleton-space: A multiscale shape description combining region and boundary information. In: Proceedings of Computer Vision and Pattern Recognition 1994, pp. 746–751 (1994)

    Google Scholar 

  42. Ogniewicz, R.L., Kübler, O.: Hierarchic Voronoi skeletons. Pattern Recognition 28(3), 343–359 (1995)

    Article  Google Scholar 

  43. Ogniewicz, R.: Automatic medial axis pruning by mapping characteristics of boundaries evolving under the euclidean geometric heat flow onto Voronoi skeletons. Technical Report 95-4, Harvard Robotics Laboratory (1995)

    Google Scholar 

  44. Okabe, A., Boots, B., Sugihara, K.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley & Sons, Chichester (1992)

    MATH  Google Scholar 

  45. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial tessellations: concepts and applications of Voronoi diagrams, 2nd edn. John Wiley & Sons Ltd, Chichester (2000)

    MATH  Google Scholar 

  46. Paul Chew, L.: Constrained delaunay triangulations. Algorithmica 4(1), 97–108 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  47. Quek, F.K.H., Petro, M.C.: Human-machine perceptual cooperation. In: CHI 1993: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 123–130. ACM Press, New York (1993)

    Chapter  Google Scholar 

  48. Rognant, L., Chassery, J.M., Goze, S., Planès, J.G.: The delaunay constrained triangulation: The delaunay stable algorithms. In: IV, pp. 147–152 (1999)

    Google Scholar 

  49. Roos, T.: Voronoi diagrams over dynamic scenes. Discrete Appl. Math. 43(3), 243–259 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  50. Shewchuk, J.R.: Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In: Lin, M.C., Manocha, D. (eds.) FCRC-WS 1996 and WACG 1996. LNCS, vol. 1148, pp. 203–222. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  51. Shewchuk, J.R.: Adaptive precision floating-point arithmetic and fast robust geometric predicates. In: Discrete and Computational Geometry, vol. 18, pp. 305–363 (1997)

    Google Scholar 

  52. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. PWS publishing (1999)

    Google Scholar 

  53. Sugihara, K., Iri, M., Inagaki, H., Imai, T.: Topology-Oriented Implementation–An Approach to Robust Geometric Algorithms. Algorithmica 27(1), 5–20 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  54. Ware, J., Jones, C.: Conflict Reduction in Map Generalization Using Iterative Improvement. GeoInformatica 2(4), 383–407 (1998)

    Article  Google Scholar 

  55. Yang, W., Gold, C.: Dynamic spatial object condensation based on the Voronoi diagram. In: Proceedings, Fourth International Symposium of LIESMARS, vol. 95, pp. 134–145 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gold, C.M., Mioc, D., Anton, F., Sharma, O., Dakowicz, M. (2009). A Methodology for Automated Cartographic Data Input, Drawing and Editing Using Kinetic Delaunay/Voronoi Diagrams. In: Gavrilova, M.L. (eds) Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. Studies in Computational Intelligence, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85126-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85126-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85125-7

  • Online ISBN: 978-3-540-85126-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics