Summary
In path planning, it is often desired to compute a path that is shortest possible while maintaining a specified amount of clearance from obstacles. This chapter utilizes the Voronoi diagram to develop a simple and efficient solution to compute such a path. By setting the clearance to zero, we obtain a very good approximation of the shortest path. We compare performance of our algorithm to other existing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: ACM-SIGMOD Int. Conf. Management of Data (SIGMOD 1998), pp. 94–105 (1998)
Amato, N., Wu, Y.: A randomized roadmap method for path and manipulation planning. IEEE Int. Conf. on Robotics and Automation, 113–120 (1996)
Bhattacharya, P., Gavrilova, M.L.: CRYSTAL - A new density-based fast and efficient clustering algorithm. In: 3rd International Symposium on Voronoi Diagrams in Science and Engineering, pp. 102–111 (2006)
Bhattacharya, P., Gavrilova, M.L.: Path planning with the required minimum clearance using the Voronoi diagram methodology. Special issue on Computational Geometry in Path Planning. IEEE RAM (2008)
Chang, H., Li, T.Y.: Assembly maintainability study with motion planning. In: IEEE International Conference on Robotics and Automation, pp. 1012–1019 (1995)
Chen, D.Z., Szczerba, R.J., Uhran, Jr., J.J.: A Framed-Quadtree Approach for Determining Euclidean Shortest Paths in a 2-D Environment. IEEE Transactions on robotics and automation 13(5) (1997)
Foss, A., Zaïne, O.R.: TURN* - Unsupervised Clustering of Spatial Data. In: ACM-SIKDD Intl. Conf. on Knowledge Discovery and Data Mining (submitted, 2002)
Fred, A.L.N., Leitao, J.M.N.: A minimum code length technique for clustering of syntactic patterns. In: International Conference on Pattern Recognition, pp. 680–684 (1996)
Gavrilova, M.L., Rokne, J.G.: Collision Detection Optimization in a Multi-Particle System. Int. J. Comput. Geometry Appl. 13(4), 279–301 (2003)
Geraerts, R., Overmars, M.: Clearance Based Path Optimization for Motion Planning. In: International Conference on Robotics and Automation (2004)
Ghosh, S.K., Mount, D.M.: An output-sensitive algorithm for computing visibility graphs. SIAM J. Computing 20 (1991)
Gold, C.: Crust and anti-crust: a one-step boundary and skeleton extraction algorithm. In: 15th ACM Symposium on Computational Geometry, pp. 189–196 (1999)
Gold, C.M., Remmele, P.R.: Voronoi Methods in GIS. LNCS, vol. 1340, pp: 21–35 (1996)
Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica 7, 381–413 (1992)
Dong-Hoon, Y., Suk-Kyo, H.: A roadmap construction algorithm for mobile robot path planning using skeleton maps. Advanced Robotics 21(1-2), 51–63 (2007)
Hussien, B.: Robot Path Planning and Obstacle Avoidance by Means of Potential Function Method. Ph.D Dissertation, University of Missouri-Columbia (1989)
Kambhampati, S., Davis, L.S.: Multiresolution path planning for mobile robots. IEEE journal of robotics and automation 2(33), 135–145 (1986)
Kang, I., Kim, T., Li, K.: A spatial data mining method by Delaunay triangulation. In: 5th ACM international workshop on Advances in geographic information systems, pp. 35–39 (1997)
Kavraki, L.E., Latombe, J.C.: Probabilistic Roadmaps for Robot Path Planning. John Wiley & Sons Ltd., Chichester (1997)
Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research 5, 90–98 (1986)
Koren, Y., Borenstein, J.: Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation. In: IEEE Conference on Robotics and Automation, pp. 1398–1404 (1991)
Kuffner, J.J., Nishiwaki, K., Kagami, S., Inaba, M., Inoue, H.: Motion planning for humanoid robots under obstacle and dynamic balance constraints. In: IEEE International Conference on Robotics and Automation, pp. 692–698 (2001)
Kuffner, J.J., Latombe, J.-C.: Interactive manipulation planning for animated characters. In: IEEE International Conference on Robotics and Automation, pp. 417–418 (2000)
Kurita, T.: An efficient agglomerative clustering algorithm using a heap. Pattern Recognition 24(3), 205–209 (1991)
Lanthier, M., Maheshwari, A., Sack, J.-R.: Approximating weighted shortest paths on polyhedral surfaces. In: 13th Annual Symposium on Computational Geometry (SCG 1997), pp. 264–273 (1997)
Lee, D.T.: Proximity and reachability in the plane, Report R-831, Dept. of Electrical Engineering, University of Illinois at Urbana-Champaign (1978)
Li, S., Su, Y.: Optimal transit path finding algorithm based on geographic information system. Intelligent Transportation Systems 2, 1670–1673 (2003)
Maritime Activity and Risk Investigation Network (2006), http://www.marin-research.ca/
Masehian, E., Amin-Naseri, M.R.: A voronoi diagram-visibility graph-potential field compound algorithm for robot path planning. Journal of Robotic Systems 21(6) (2004)
Mitchell, J.S.B., Papadimitriou, C.H.: The weighted region problem: finding shortest paths through a weighted planar subdivision. Journal of the ACM 38(1), 18–73 (1991)
Mostafavi, M.A., Gold, C., Dakowicz, M.: Delete and insert operations in Voronoi/Delaunay methods and applications. Computers & Geosciences 29, 523–530 (2003)
Pizarro, D., Campusano, L.E., Roger, G.C., Patrizzio, V., Nancy, H.-K., Ilona, K.S.: Clustering of 3D Spatial Points Using Maximum Likelihood Estimator over Voronoi Tessellations: Study of the Galaxy Distribution in Redshift Space. In: 3rd International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2006), pp. 112–121 (2006)
Ramella, M., Boschin, W., Fadda, D., Nonino, M.: Finding galaxy clusters using Voronoi tessellations. Astronomy and Astrophysics 368, 776–786 (2001)
Simeon, T., Chatila, R., Laumond, J.-P.: Computer aided motion for logistics in nuclear plants. In: International symposium on artificial intelligence, robotics and human centered technology for nuclear applications, pp. 46–53 (2002)
Thomas, S., Song, G., Amato, N.M.: Protein folding by motion planning. Physical biology 2, 148–155 (2005)
Vladimir, E.-C., Michael, E.H.: Robust Clustering of Large Geo-referenced Data Sets. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 327–337. Springer, Heidelberg (1999)
Warren, C.W.: Global Path Planning Using Artificial Potential Fields. In: IEEE Conference on Robotics and Automation, pp. 316–321 (1989)
Wein, R., Van den Berg, J.P., Halperin, D.: The Visibility-Voronoi complex and its applications. In: 21st Annual Symposium on Computational geometry, pp. 63–72 (2005)
Welzl, E.: Constructing the visibility graph for n line segments in O(n 2) time. Information Processing Letters 20, 167–171 (1985)
Xu, Y., Olman, V., Xu, D.: Minimum Spanning Trees for Gene Expression Data Clustering. Genome Inform. 12, 24–33 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bhattacharya, P., Gavrilova, M.L. (2009). Density-Based Clustering Based on Topological Properties of the Data Set. In: Gavrilova, M.L. (eds) Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. Studies in Computational Intelligence, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85126-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-85126-4_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85125-7
Online ISBN: 978-3-540-85126-4
eBook Packages: EngineeringEngineering (R0)