Skip to main content

8 User Profiling from Imbalanced Data in a Declarative Scene Modelling Environment

  • Chapter
Artificial Intelligence Techniques for Computer Graphics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 159))

Abstract

Declarative Modelling is an early-phase design technique allowing the user to describe an object or an environment in abstract terms, closer to human intuition. The geometric solutions automatically yielded for such a description are evaluated by the user and may be subsequently used for the construction of a computational model of his/her preferences. Due to the physical limitations of the human evaluator, and the large number of the representations produced, only a subset of the latter are actually evaluated by the user and eventually a small number of them are approved, leading to imbalanced datasets in regard to the learning mechanism invoked. In the current work we discuss and assess the capability of a mechanism adopted for user modelling in a declarative design environment to handle this imbalance. The experimental results in this context indicate considerable efficiency in the prediction for the under-represented class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bardis, G.: Machine Learning and Decision Support for Declarative Scene Modelling / Apprentissage et aide à la décision pour la modélisation déclarative de scènes (bilingual), Thèse de Doctorat, Université de Limoges, France (2006)

    Google Scholar 

  2. Bardis, G., Golfinopoulos, V., Makris, D., Miaoulis, G., Plemenos, D.: Experimental Results of Selective Visualisation According to User Preferences in a Declarative Modelling Environment. In: 10th 3IA – International Conference on Computer Graphics and Artificial Intelli-gence Infographie Interactive et Intelligence Artificielle, Athens, Greece, pp. 29–38 (2007) ISBN 2-914256-09-4

    Google Scholar 

  3. Bonnefoi, P.-F., Plemenos, D.: Constraint Satisfaction Techniques for Declarative Scene Modelling by Hierarchical Decomposition. In: 4th 3IA – International Conference on Computer Graphics and Artificial Intelligence, Limoges, France, pp. 89–102 (2002) ISBN 2-914256-03-5

    Google Scholar 

  4. Champciaux, L.: Classification: A Basis for Understanding Tools in Declarative Modelling. Computer Networks and ISDN Systems 30, 1841–1852 (1998)

    Article  Google Scholar 

  5. Chauvat, D.: The VoluFormes Project: An Example of Declarative Modelling with Spatial Control, PhD Thesis, Nantes, France (1994)

    Google Scholar 

  6. Dragonas, J.: Collaborative Declarative Modelling / Modelisation Declarative Collaborative (bilingual), Thèse de Doctorat, Université de Limoges, France (2006)

    Google Scholar 

  7. Essert-Villard, C., Schreck, P., Dufourd, J.-F.: Sketch-based pruning of a solution space within a formal geometric constraint solver. Artificial Intelligence 124, 139–159 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Freund, Y., Schapire, R.: A decision-theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fribault, P.: Modelisation Declarative d’Espaces Habitable (in French), Thèse de Doctorat, Université de Limoges, France (2003)

    Google Scholar 

  10. Golfinopoulos, V.: Study and Implementation of a Knowledge-based Reverse Engineering System for Declarative Scene Modelling / Étude et réalisation dun système de rétro-conception basé sur la connaissance pour la modélisation déclarative de scènes (bilingual), Thèse de Doctorat, Université de Limoges, France (2006)

    Google Scholar 

  11. Joan-Arinyo, R., Luzon, M.V., Soto, A.: Genetic algorithms for root multi-selection in constructive geometric constraint solving. Computers and Graphics 27, 51–60 (2003)

    Article  Google Scholar 

  12. Kotsiantis, S., Tzelepis, D., Koumanakos, E., Tampakas, V.: Selective Costing Voting for Bankruptcy Prediction. International Journal of Knowledge-Based & Intelligent Engineering Systems (KES) 11(2), 115–127 (2007)

    Google Scholar 

  13. Lucas, M., Martin, D., Martin, P., Plemenos, D.: The ExploFormes project: Some Steps To-wards Declarative Modelling of Forms. In: AFCET-GROPLAN Conference, Strasbourg (France), November 29 – December 1, vol. 67, pp. 35–49. Published in BIGRE (1989) (in French)

    Google Scholar 

  14. Makris, D.: Study and Realisation of a Declarative System for Modelling and Generation of Style with Genetic Algorithms: Application in Architectural Design / Etude et réalisation d’un système déclaratif de modélisation et de génération de styles par algorithmes génétiques: application à la création architecturale (bilingual), Thèse de Doctorat, Université de Limoges, France (2005)

    Google Scholar 

  15. Martin, D., Martin, P.: PolyFormes: Software for the Declarative Modelling of Polyhedra. The Visual Computer 15, 55–76 (1999)

    Article  Google Scholar 

  16. Miaoulis, G.: Contribution à l’étude des Systèmes d’Information Multimédia et Intelligent dédiés à la Conception Déclarative Assistée par l’Ordinateur – Le projet MultiCAD, Thèse de Doctorat, Université de Limoges, France (2006)

    Google Scholar 

  17. Miaoulis, G., Plemenos, D., Skourlas, C.: MultiCAD Database: Toward a unified data and knowledge representation for database scene modelling. In: 3rd 3IA International Conference on Computer Graphics and Artificial Intelligence, Limoges, France (2000)

    Google Scholar 

  18. Plemenos, D.: Declarative modelling by hierarchical decomposition. The actual state of the MultiFormes project. In: Communication in International Conference GraphiCon 1995, St Petersburg, Russia (1995)

    Google Scholar 

  19. Plemenos, D., Miaoulis, G., Vassilas, N.: Machine learning for a General Purpose Declarative Scene Modeller. In: International Conference GraphiCon 2002, Nizhny Novgorod, Russia (2002)

    Google Scholar 

  20. Plemenos, D., Tamine, K.: Increasing the efficiency of declarative modelling. Constraint evaluation for the hierarchical decomposition approach. In: International Conference WSCG 1997, Plzen, Czech Republic (1997)

    Google Scholar 

  21. Polikar, R., Byorick, J., Krause, S., Marino, A., Moreton, M.: Learn++: A Classifier Independent Incremental Learning Algorithm. In: Proceedings of Int. Joint Conf. Neural Networks, pp. 1742–1747 (2002)

    Google Scholar 

  22. Poulet, F.: Modélisation déclarative de scènes tridimensionnelles: Le projet SpatioFormes, Infographie Interactive et Intelligence Artificielle (3IA), Limoges (1994)

    Google Scholar 

  23. Poulet, F., Lucas, M.: Modelling Megalithic Sites. EuroGraphics 15(3), 279–288 (1996)

    Google Scholar 

  24. Vassilas, N., Miaoulis, G., Chronopoulos, D., Konstantinidis, E., Ravani, I., Makris, D., Plemenos, D.: MultiCAD-GA: A System for the Design of 3D Forms Based on Genetic Algorithms and Human Evaluation. In: Vlahavas, I.P., Spyropoulos, C.D. (eds.) SETN 2002. LNCS (LNAI), vol. 2308, pp. 203–214. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Visa, S., Ralescu, A.: Issues in Mining Imbalanced Data Sets - A Review Paper. In: Proceedings of the Sixteen Midwest Artificial Intelligence and Cognitive Science Conference, MAICS, pp. 67–73, Dayton, April 16-17 (2005)

    Google Scholar 

  26. Weiss, G.M., Provost, F.: Learning When Training Data are Costly: The Effect of Class Distribution on Tree Induction. Journal of Artificial Intelligence Research 19, 315–354 (2003)

    MATH  Google Scholar 

  27. Xu, K., Stewart, J., Fiume, E.: Constraint-based Automatic Placement for Scene Composition, Graphics Interface, Canada (2002)

    Google Scholar 

  28. Zhang, J., Mani, I.: k-nn Approach to Unbalanced Data Distributions: A Case Study Involving Information Extraction. In: Proceedings of the ICML-2003 Workshop: Learning with Imbalanced Data Sets II, pp. 42–48 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bardis, G., Miaoulis, G., Plemenos, D. (2009). 8 User Profiling from Imbalanced Data in a Declarative Scene Modelling Environment. In: Plemenos, D., Miaoulis, G. (eds) Artificial Intelligence Techniques for Computer Graphics. Studies in Computational Intelligence, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85128-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85128-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85127-1

  • Online ISBN: 978-3-540-85128-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics