Abstract
Declarative Modelling is an early-phase design technique allowing the user to describe an object or an environment in abstract terms, closer to human intuition. The geometric solutions automatically yielded for such a description are evaluated by the user and may be subsequently used for the construction of a computational model of his/her preferences. Due to the physical limitations of the human evaluator, and the large number of the representations produced, only a subset of the latter are actually evaluated by the user and eventually a small number of them are approved, leading to imbalanced datasets in regard to the learning mechanism invoked. In the current work we discuss and assess the capability of a mechanism adopted for user modelling in a declarative design environment to handle this imbalance. The experimental results in this context indicate considerable efficiency in the prediction for the under-represented class.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bardis, G.: Machine Learning and Decision Support for Declarative Scene Modelling / Apprentissage et aide à la décision pour la modélisation déclarative de scènes (bilingual), Thèse de Doctorat, Université de Limoges, France (2006)
Bardis, G., Golfinopoulos, V., Makris, D., Miaoulis, G., Plemenos, D.: Experimental Results of Selective Visualisation According to User Preferences in a Declarative Modelling Environment. In: 10th 3IA – International Conference on Computer Graphics and Artificial Intelli-gence Infographie Interactive et Intelligence Artificielle, Athens, Greece, pp. 29–38 (2007) ISBN 2-914256-09-4
Bonnefoi, P.-F., Plemenos, D.: Constraint Satisfaction Techniques for Declarative Scene Modelling by Hierarchical Decomposition. In: 4th 3IA – International Conference on Computer Graphics and Artificial Intelligence, Limoges, France, pp. 89–102 (2002) ISBN 2-914256-03-5
Champciaux, L.: Classification: A Basis for Understanding Tools in Declarative Modelling. Computer Networks and ISDN Systems 30, 1841–1852 (1998)
Chauvat, D.: The VoluFormes Project: An Example of Declarative Modelling with Spatial Control, PhD Thesis, Nantes, France (1994)
Dragonas, J.: Collaborative Declarative Modelling / Modelisation Declarative Collaborative (bilingual), Thèse de Doctorat, Université de Limoges, France (2006)
Essert-Villard, C., Schreck, P., Dufourd, J.-F.: Sketch-based pruning of a solution space within a formal geometric constraint solver. Artificial Intelligence 124, 139–159 (2000)
Freund, Y., Schapire, R.: A decision-theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)
Fribault, P.: Modelisation Declarative d’Espaces Habitable (in French), Thèse de Doctorat, Université de Limoges, France (2003)
Golfinopoulos, V.: Study and Implementation of a Knowledge-based Reverse Engineering System for Declarative Scene Modelling / Étude et réalisation dun système de rétro-conception basé sur la connaissance pour la modélisation déclarative de scènes (bilingual), Thèse de Doctorat, Université de Limoges, France (2006)
Joan-Arinyo, R., Luzon, M.V., Soto, A.: Genetic algorithms for root multi-selection in constructive geometric constraint solving. Computers and Graphics 27, 51–60 (2003)
Kotsiantis, S., Tzelepis, D., Koumanakos, E., Tampakas, V.: Selective Costing Voting for Bankruptcy Prediction. International Journal of Knowledge-Based & Intelligent Engineering Systems (KES) 11(2), 115–127 (2007)
Lucas, M., Martin, D., Martin, P., Plemenos, D.: The ExploFormes project: Some Steps To-wards Declarative Modelling of Forms. In: AFCET-GROPLAN Conference, Strasbourg (France), November 29 – December 1, vol. 67, pp. 35–49. Published in BIGRE (1989) (in French)
Makris, D.: Study and Realisation of a Declarative System for Modelling and Generation of Style with Genetic Algorithms: Application in Architectural Design / Etude et réalisation d’un système déclaratif de modélisation et de génération de styles par algorithmes génétiques: application à la création architecturale (bilingual), Thèse de Doctorat, Université de Limoges, France (2005)
Martin, D., Martin, P.: PolyFormes: Software for the Declarative Modelling of Polyhedra. The Visual Computer 15, 55–76 (1999)
Miaoulis, G.: Contribution à l’étude des Systèmes d’Information Multimédia et Intelligent dédiés à la Conception Déclarative Assistée par l’Ordinateur – Le projet MultiCAD, Thèse de Doctorat, Université de Limoges, France (2006)
Miaoulis, G., Plemenos, D., Skourlas, C.: MultiCAD Database: Toward a unified data and knowledge representation for database scene modelling. In: 3rd 3IA International Conference on Computer Graphics and Artificial Intelligence, Limoges, France (2000)
Plemenos, D.: Declarative modelling by hierarchical decomposition. The actual state of the MultiFormes project. In: Communication in International Conference GraphiCon 1995, St Petersburg, Russia (1995)
Plemenos, D., Miaoulis, G., Vassilas, N.: Machine learning for a General Purpose Declarative Scene Modeller. In: International Conference GraphiCon 2002, Nizhny Novgorod, Russia (2002)
Plemenos, D., Tamine, K.: Increasing the efficiency of declarative modelling. Constraint evaluation for the hierarchical decomposition approach. In: International Conference WSCG 1997, Plzen, Czech Republic (1997)
Polikar, R., Byorick, J., Krause, S., Marino, A., Moreton, M.: Learn++: A Classifier Independent Incremental Learning Algorithm. In: Proceedings of Int. Joint Conf. Neural Networks, pp. 1742–1747 (2002)
Poulet, F.: Modélisation déclarative de scènes tridimensionnelles: Le projet SpatioFormes, Infographie Interactive et Intelligence Artificielle (3IA), Limoges (1994)
Poulet, F., Lucas, M.: Modelling Megalithic Sites. EuroGraphics 15(3), 279–288 (1996)
Vassilas, N., Miaoulis, G., Chronopoulos, D., Konstantinidis, E., Ravani, I., Makris, D., Plemenos, D.: MultiCAD-GA: A System for the Design of 3D Forms Based on Genetic Algorithms and Human Evaluation. In: Vlahavas, I.P., Spyropoulos, C.D. (eds.) SETN 2002. LNCS (LNAI), vol. 2308, pp. 203–214. Springer, Heidelberg (2002)
Visa, S., Ralescu, A.: Issues in Mining Imbalanced Data Sets - A Review Paper. In: Proceedings of the Sixteen Midwest Artificial Intelligence and Cognitive Science Conference, MAICS, pp. 67–73, Dayton, April 16-17 (2005)
Weiss, G.M., Provost, F.: Learning When Training Data are Costly: The Effect of Class Distribution on Tree Induction. Journal of Artificial Intelligence Research 19, 315–354 (2003)
Xu, K., Stewart, J., Fiume, E.: Constraint-based Automatic Placement for Scene Composition, Graphics Interface, Canada (2002)
Zhang, J., Mani, I.: k-nn Approach to Unbalanced Data Distributions: A Case Study Involving Information Extraction. In: Proceedings of the ICML-2003 Workshop: Learning with Imbalanced Data Sets II, pp. 42–48 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bardis, G., Miaoulis, G., Plemenos, D. (2009). 8 User Profiling from Imbalanced Data in a Declarative Scene Modelling Environment. In: Plemenos, D., Miaoulis, G. (eds) Artificial Intelligence Techniques for Computer Graphics. Studies in Computational Intelligence, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85128-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-85128-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85127-1
Online ISBN: 978-3-540-85128-8
eBook Packages: EngineeringEngineering (R0)