Skip to main content

Arthur and Merlin as Oracles

  • Conference paper
Mathematical Foundations of Computer Science 2008 (MFCS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5162))

  • 1162 Accesses

Abstract

We study some problems solvable in deterministic polynomial time given oracle access to the promise version of the Arthur-Merlin class AM. The main result is that \({{\rm BPP}^{\rm NP}_{||}} \subseteq {{\rm P}^{{{\rm pr}{\rm AM}}}_{||}}\). An important property of the class \({{\rm P}^{{{\rm pr}{\rm AM}}}_{||}}\) is that it can be derandomized as \({{\rm P}^{{{\rm pr}{\rm AM}}}_{||}}={{\rm P}^{\rm NP}_{||}}\), under a natural hardness hypothesis used for derandomizing the class AM; this directly follows from a result due to Miltersen and Vinodchandran [10]. As a consequence, we get that \({{\rm BPP}^{{\rm NP}}_{||}} = {{\rm P}^{\rm NP}_{||}}\), under the above hypothesis. This gives an alternative (and perhaps, a simpler) proof of the same result obtained by Shaltiel and Umans [16], using different techniques.

Next, we present an FPprAM algorithm for finding near-optimal strategies of a succinctly presented zero-sum game. For the same problem, Fortnow et al. [7] described a ZPPNP algorithm. As a by product of our algorithm, we also get an alternative proof of the result by Fortnow et. al. One advantage with an FPprAM algorithm is that it can be directly derandomized using the Miltersen-Vinodchandran construction [10]. As a consequence, we get an FPNP algorithm for the above problem, under the hardness hypothesis used for derandomizing AM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Althöfer, I.: On sparse approximations to randomized strategies and convex combinations. Linear Algebra and its Applications 199 (1994)

    Google Scholar 

  2. Babai, L., Moran, S.: Arthur-Merlin games: A randomized proof system, and a hierarchy of complexity classes. Journal of Computer and System Sciences 36(2), 254–276 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cai, J.: \(\rm {S}_2^{\it p} \subseteq {ZPP}^{{NP}}\). Journal of Computer and System Sciences 73(1) (2007)

    Google Scholar 

  4. Chakaravarthy, V., Roy, S.: Finding irrefutable certificates for \({\rm S}_2^p\) via Arthur and Merlin. In: STACS (2008)

    Google Scholar 

  5. Du, D., Ko, K.: Computational Complexity. John Wiley, Chichester (2000)

    MATH  Google Scholar 

  6. Feigenbaum, J., Koller, D., Shor, P.: A game-theoretic classification of interactive complexity classes. In: CCC (1995)

    Google Scholar 

  7. Fortnow, L., Impagliazzo, R., Kabanets, V., Umans, C.: On the complexity of succinct zero-sum games. In: CCC (2005)

    Google Scholar 

  8. Klivans, A., van Melkebeek, D.: Graph nonisomorphism has subexponential size proofs unless the polynomial hierarchy collapses. SIAM Journal on Computing 31(5), 1501–1526 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lipton, R., Young, N.: Simple strategies for large zero-sum games with applications to complexity theory. In: STOC (1994)

    Google Scholar 

  10. Miltersen, P., Vinodchandran, N.: Derandomizing Arthur-Merlin games using hitting sets. In: FOCS (1999)

    Google Scholar 

  11. Neumann, J.: Zur theorie der gesellschaftspiel. Mathematische Annalen 100 (1928)

    Google Scholar 

  12. Newman, J.: Private vs. common random bits in communication complexity. Information Processing Letters 39, 67–71 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nisan, N., Wigderson, A.: Hardness vs randomness. Journal of Computer and System Sciences 49(2), 149–167 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Owen, G.: Game Theory. Academic Press, London (1982)

    MATH  Google Scholar 

  15. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  16. Shaltiel, R., Umans, C.: Pseudorandomness for approximate counting and sampling. Computational Complexity 15(4), 298–341 (2007)

    Article  MathSciNet  Google Scholar 

  17. Sipser, M.: A complexity theoretic approach to randomness. In: STOC (1983)

    Google Scholar 

  18. Stockmeyer, L.: The complexity of approximate counting. In: STOC (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edward Ochmański Jerzy Tyszkiewicz

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chakaravarthy, V.T., Roy, S. (2008). Arthur and Merlin as Oracles. In: Ochmański, E., Tyszkiewicz, J. (eds) Mathematical Foundations of Computer Science 2008. MFCS 2008. Lecture Notes in Computer Science, vol 5162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85238-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85238-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85237-7

  • Online ISBN: 978-3-540-85238-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics