Abstract
This paper presents simple, syntactic strong normalization proofs for the simply-typed λ-calculus and the polymorphic λ-calculus (system F) with the full set of logical connectives, and all the permutative reductions. The normalization proofs use translations of terms and types of to terms and types of
and from
to
.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
David, R., Nour, K.: A Short Proof of the Strong Normalization of Classical Natural Deduction with Disjunction. Journal of Symbolic Logic 68(4), 1277–1288 (2003)
de Groote, Ph.: On the Strong Normalisation of Natural Deduction with Permutation-Conversions. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 45–59. Springer, Heidelberg (1999)
de Groote, Ph.: On the Strong Normalisation of Intuitionistic Natural Deduction with Permutation-Conversions. Information and Computation 178(2), 441–464 (2002)
Girard, J.-Y.: The Blind Spot. Lectures on Logic. Rome, Autumn (2004), http://iml.univ-mrs.fr/~girard/coursang/coursang.html
Joachimski, F., Matthes, R.: Short Proofs of Normalization for the simply-typed λ-calculus, Permutative Conversions and Gödel’s T. Archive for Mathematical Logic 42(1), 59–87 (2003)
Schwichtenberg, H.: Minimal Logic for Computable Functionals. In: Logic Colloquium 2005, A.K. Peters (to appear, 2005)
Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Studies in Logic and the Foundations of Mathematics, vol. 149. Elsevier, Amsterdam (2006)
Tatsuta, M.: Second-order Permutative Conversions with Prawitz’s Strong validity. Progress in Informatics 2, 41–56 (2005)
Tatsuta, M.: Simple Saturated Sets for Disjunction and Second-order existential Quantification. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 366–380. Springer, Heidelberg (2007)
Tatsuta, M., Nakazawa, K.: Strong Normalization of Classical Natural Deduction with Disjunctions. Annals of Pure and Applied Logic 153(1), 21–37 (2008)
Tatsuta, M., Mints, G.: A Simple Proof of Second-Order Strong Normalization with Permutative Conversions. Annals of Pure and Applied Logic 136(1-2), 134–155 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wojdyga, A. (2008). Short Proofs of Strong Normalization. In: Ochmański, E., Tyszkiewicz, J. (eds) Mathematical Foundations of Computer Science 2008. MFCS 2008. Lecture Notes in Computer Science, vol 5162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85238-4_50
Download citation
DOI: https://doi.org/10.1007/978-3-540-85238-4_50
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85237-7
Online ISBN: 978-3-540-85238-4
eBook Packages: Computer ScienceComputer Science (R0)