Skip to main content

Short Proofs of Strong Normalization

  • Conference paper
Mathematical Foundations of Computer Science 2008 (MFCS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5162))

  • 1276 Accesses

Abstract

This paper presents simple, syntactic strong normalization proofs for the simply-typed λ-calculus and the polymorphic λ-calculus (system F) with the full set of logical connectives, and all the permutative reductions. The normalization proofs use translations of terms and types of to terms and types of and from to .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. David, R., Nour, K.: A Short Proof of the Strong Normalization of Classical Natural Deduction with Disjunction. Journal of Symbolic Logic 68(4), 1277–1288 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. de Groote, Ph.: On the Strong Normalisation of Natural Deduction with Permutation-Conversions. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 45–59. Springer, Heidelberg (1999)

    Google Scholar 

  3. de Groote, Ph.: On the Strong Normalisation of Intuitionistic Natural Deduction with Permutation-Conversions. Information and Computation 178(2), 441–464 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Girard, J.-Y.: The Blind Spot. Lectures on Logic. Rome, Autumn (2004), http://iml.univ-mrs.fr/~girard/coursang/coursang.html

  5. Joachimski, F., Matthes, R.: Short Proofs of Normalization for the simply-typed λ-calculus, Permutative Conversions and Gödel’s T. Archive for Mathematical Logic 42(1), 59–87 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Schwichtenberg, H.: Minimal Logic for Computable Functionals. In: Logic Colloquium 2005, A.K. Peters (to appear, 2005)

    Google Scholar 

  7. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Studies in Logic and the Foundations of Mathematics, vol. 149. Elsevier, Amsterdam (2006)

    Google Scholar 

  8. Tatsuta, M.: Second-order Permutative Conversions with Prawitz’s Strong validity. Progress in Informatics 2, 41–56 (2005)

    Article  Google Scholar 

  9. Tatsuta, M.: Simple Saturated Sets for Disjunction and Second-order existential Quantification. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 366–380. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Tatsuta, M., Nakazawa, K.: Strong Normalization of Classical Natural Deduction with Disjunctions. Annals of Pure and Applied Logic 153(1), 21–37 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Tatsuta, M., Mints, G.: A Simple Proof of Second-Order Strong Normalization with Permutative Conversions. Annals of Pure and Applied Logic 136(1-2), 134–155 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edward Ochmański Jerzy Tyszkiewicz

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wojdyga, A. (2008). Short Proofs of Strong Normalization. In: Ochmański, E., Tyszkiewicz, J. (eds) Mathematical Foundations of Computer Science 2008. MFCS 2008. Lecture Notes in Computer Science, vol 5162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85238-4_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85238-4_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85237-7

  • Online ISBN: 978-3-540-85238-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics