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Abstract. Statistical language models (SLMs) for speech recognition
have the advantage of robustness, and grammar-based models (GLMs)
the advantage that they can be built even when little corpus data is
available. A known way to attempt to combine these two methodologies
is first to create a GLM, and then use that GLM to generate training
data for an SLM. It has however been difficult to evaluate the true util-
ity of the idea, since the corpus data used to create the GLM has not
in general been explicitly available. We exploit the Open Source Regu-
lus platform, which supports corpus-based construction of linguistically
motivated GLMs, to perform a methodologically sound comparison: the
same data is used both to create an SLM directly, and also to create a
GLM, which is then used to generate data to train an SLM. An evalu-
ation on a medium-vocabulary task showed that the indirect method of
constructing the SLM is in fact only marginally better than the direct
one. The method used to create the training data is critical, with PCFG
generation heavily outscoring CFG generation.



1 Introduction

Non-trivial speech recognition always requires some kind of language model [1].
At least in the world of research, it has generally been assumed that language
models are best constructed using some kind of data-driven process; the most
common alternative in practice is the N-gram grammar. We will generically refer
to models built in this way as “Statistical Language Models” or SLMs.

SLMs perform extremely well when there is adequate training data available,
but in practice this is not always the case. When training data is limited or, in
the worst case, completely unavailable, an alternative method is to construct
the language model as a hand-coded grammar [2–5]. We will refer to models
of this kind as “Grammar-based Language Models” or GLMs. GLMs appear to
be particularly suitable for applications which require high levels of accuracy,
and which will also be used by expert users, who can reasonably be expected to
produce a high percentage of in-coverage material [6–9]. The distinction between
SLMs and GLMs is by no means black-and-white. SLMs can contain embedded
GLM-style subgrammars that define simple types of phrase like dates or times
[10]. In the other direction, once a GLM has been created, it is possible to use
available data to perform statistical tuning, which technically transforms the
GLM into a type of SLM. We will have more to say about this later.

Statistical tuning of a GLM is certainly one way to add some of the advan-
tages associated with SLMs. It fails, however, to address the key problem, which
is brittleness. In general, grammar-based speech recognition tends to be unfor-
giving for naive users, since it gives results only for utterances within grammar
coverage. This suggests another compromise position between the two method-
ologies. As noted, SLMs clearly perform well when they are trained on enough
data. The grammar in a GLM can also be used to generate data; this data can be
used to train an SLM. The hope is that the result will combine the advantages
of both methodologies. The final language model is an SLM, so it will not be
subject to brittleness; but since this language model is created from a GLM,
it will be possible to achieve reasonable performance without large amounts of
training data.

Although the idea of creating SLMs from GLM-generated data has been used
successfully in more than one study [11, 12], one cannot help feeling that there is
something, methodologically speaking, that is slightly suspicious about it. It is
always clear what data has been used to construct an SLM; it is, however, much
harder to be quantative about the process of building a GLM. When a grammar
writer hand-codes a grammar, there are always utterances that they have in
mind to cover. If those items were recorded as the grammar was built, they
would constitute a corpus that represented what data the hand-coded grammar
was “trained” on. The same corpus could be used for other purposes, in particular
for explicit training of an SLM. It is certainly possible a priori that this would
produce a recognizer that yielded just as good performance as one built through
the roundabout route of first creating a grammar, and then using it to generate
training data. However, grammar-writers are rarely, if ever, methodical enough



to write down all their example sentences, and comparisons of the kind suggested
are hard to carry out in practice.

This kind of problem is inherent in any comparison between data-driven
machine learning and hand-coded rules. However, the Regulus project offers an
approach to address this problem. Regulus [13] is an Open Source toolkit for spo-
ken language system development, which builds grammar based language models
for the commercial Nuance4 platform using example-based methods driven by
small corpora of examples. In [14], it was shown how Regulus made possible
a methodologically fair comparison between a GLM and a normal SLM on a
medium-vocabulary speech-understanding task; the same data could be used
explicitly to build both language models, rendering irrelevant any speculation
about intangible grammar-writer’s intuitions.

The paper also showed up another potential methodological pitfall. When
recognizers derived from the two language models were compared in terms of
Word Error Rate (WER) on a corpus which contained data both in-coverage
and out-of-coverage with respect to the GLM, the SLM-based recognizer pro-
duced slightly better performance. Further analysis, however, revealed that the
raw WER scores were in fact very misleading; they represented the average of
better performance of the SLM on out-of-coverage data, and worse performance
on in-coverage data. Performance of both recognizers on the out-of-coverage data
(WER = 48% for SLM and 58% for GLM) was however so bad as to be essentially
uninteresting in the context of the speech translation task, which required pre-
cise, fine-grained analysis5. Conversely, performance on in-coverage data showed
a WER for the GLM (6%) that was less than half that of the SLM (13%), an
extremely useful improvement. This is by no means the first study which has
shown up the weakness of WER as a metric for evaluating speech understanding,
as opposed to raw speech recognition [15].

In the present paper, we use the Regulus platform and a methodology which
borrows several elements from [14] to evaluate the idea of creating SLMs from
GLM-generated training data. This approach makes it possible to address the key
methodological problems in a sound way, which has not been the case in previous
studies. The paper is organized as follows. Section 2 describes the framework that
we have adopted for performing the language modeling experiments. Section 3
describes the experiments performed. Section 4 summarizes the results and draws
conclusions for language modeling in sparse data situations.

2 Experimental Framework

As discussed in the previous section, a key problem with earlier work has been
the impossibility of knowing what “seed corpus” was used to construct the hand-
coded grammars used to generate the SLM training data. The Regulus platform

4 Nuance 8.5 was used for the work discussed in this paper.
5 In tasks involving coarse-grained speech understanding, for example call-routing,

this difference might have been more important.



allows us to address these issues head-on, since it makes the role of the seed cor-
pus completely explicit. The basic idea is to start with a general resource gram-
mar, and then use the seed corpus to drive an example-based process that cre-
ates the final domain-specific language model. We now present a brief overview
of how this is done; the details of the various compilation steps are described in
[13, Chapters 9 and 10].

The Regulus release contains a fairly substantial domain-independent feature
grammar for English [13, Chapter 8], which also contains a function-word lexicon
of about 500 words. The grammar developer adds to them a domain-specific
lexicon containing the necessary content words, a domain-specific seed corpus,
and a set of “operationality criteria”, whose role will be explained shortly. These
resources constitute the input to the grammar creation process. The Regulus
parser is first used to convert the seed corpus into a set of parse trees. The
operationality criteria then define how each tree is to be cut up into a number
of subtrees. The rules in each subtree are collapsed into a derived rule. The set
of all such derived rules constitutes a specialised version of the original feature
grammar.

By construction, the specialised feature grammar produces analyses compat-
ible with those of the original grammar, and covers all the examples in the seed
corpus, but will in general have coverage strictly less than that of the original
grammar. The specialised feature grammar is next subjected to another compi-
lation phase, which converts it into a CFG grammar in Nuance’s GSL notation.
Finally, the seed corpus can optionally be used a second time, as training data
to convert the CFG grammar into a PCFG grammar. This final conversion stage
is performed by the Nuance compute-grammar-probs utility.

Nuance contains another utility, generate, which can be used to generate
an arbitrary number of sentences from a GSL-formatted CFG grammar. We
also wrote a utility of our own, which performs generation on GSL-formatted
PCFG grammars produced by the Regulus compilation process. Both Nuance’s
generate and our own generation utility work by sampling the space of gener-
ated utterances, starting with the root symbol and expanding non-terminals until
the result contains only terminals. The critical difference is that generate, when
randomly choosing a rule to expand a non-terminal N , assigns equal weights to
all the productions where N occurs on the LHS. Our PCFG generation utility,
in contrast, weights the productions with the probabilities attached to them.

To recapitulate, the process we have just outlined allows us to use a gram-
mar to generate training data for building an SLM, but does it in a way which
makes completely explicit which corpus data was used to construct the genera-
tion grammar itself. In effect, the “seed corpus” reifies the linguistic intuitions
used to build the generation grammar. This has several very useful consequences.
In particular, since the seed corpus is just a normal domain corpus, it is also
possible to use it directly to train an SLM.

The concrete experiments we describe were performed using English corpora
and an English Regulus grammar taken from MedSLT [16], a medium-vocabulary
Open Source speech translation system for medical domains. Vocabulary size was



458 words. Most of the detailed aspects of the MedSLT system are not relevant
here, but one turned out to be potentially useful. Translation in the system is
interlingua-based: source-language representations are translated into interlin-
gua representations, and then into target-language representations. The space of
well-defined interlingua representations is defined by means of another Regulus
grammar [17]. Not all representations licensed by the source-language grammar
produce well-formed interlingua; it can be the case that constraints are hard
to formulate at the source-language level, but easy to capture in interlingua.
This means that the interlingua can be used as another source of information.
Since some of the randomly generated utterances do not produce well-formed
interlingua after being passed through the source-language-to-interlingua trans-
fer phase, it is possible to treat the combination of the transfer rules and the
interlingua definition as a filter.

The actual construction of the SLMs was performed using the Nuance Say-
Anything c© utilities. Each SLM was a class trigram model, created using Good-
Turing discounting. The classes were defined using a Regulus utility which ex-
tracted sets of words with similar syntactic and semantic properties from the
relevant specialized grammars. The properties for each class were defined by
specifying a small number, usually two or three, paradigm words, and comput-
ing the least common generalization of the corresponding lexicon entries.

In the next section, we describe the concrete experiments we carried out using
this basic framework.

3 Experiments

We used all of the following different kinds of corpus as input to train SLMs:

Seed The original “seed corpora”. This consisted of 948 examples.
CFG-generated Corpora generated from a CFG grammar derived by Regulus

from the seed corpus. We created datasets of several different sizes.
PCFG-generated Corpora generated from a PCFG grammar derived by Reg-

ulus from the seed corpus. We created datasets of several different sizes.
CFG-generated-filtered Corpora generated by a CFG grammar derived by

Regulus from the seed corpus, and then filtered by removing utterances which
do not give rise to well-formed interlingua. We created datasets of several
different sizes.

PCFG-generated-filtered Corpora generated by a PCFG grammar derived
by Regulus from the seed corpus, and then filtered by removing utterances
which do not give rise to well-formed interlingua. We created datasets of
several different sizes.

We evaluated the quality of the resulting SLMs by using them to perform
recognition on the 810-utterance dataset described in [14], which consisted of
spontaneously generated utterances collected during studies carried out on naive
subjects who had not been involved in system development. 514 of these utter-
ances (63%) were within the coverage of the GLM grammar, and 296 out of
coverage.



The main results from the experiments are presented in Tables 1 to 6. As
in [14], we calculate WER and Sentence Error Rate (SER) both for the full
datasets, and also for the subset consisting only of in-coverage utterances. Our
primary reason for using SER as a metric is that it enables us to apply the
McNemar sign test, in order to evaluate the significance of differences between
recognition performance of different versions. We present significance as one
of the following: “not significant”, “significant at P < 0.05”, “significant at
P < 0.01” and “significant at P < 0.001”. In the rest of this section, we discuss
the implications of the results.

3.1 Different types of corpora

Tables 1 and 2 presents results contrasting different methods for building the
SLM training corpora; the first line, for the GLM built using the “seed” corpus,
is intended to provide a reference point. Line 2 shows the SLM built from the
“seed” corpus. The other recognizers were all built from GLM-generated training
corpora of the same size. The small size of these corpora reflects the fact that
CFG generation (lines 3 and 4) produces very low-grade data. The interlingua-
based filtering operation discards over 99% of it; 4281 was the number of utter-
ances left by filtering from an initial CFG-generated set of 500K utterances, and
the other corpora were then truncated to that length6 Line 3 shows results for
unfiltered, and line 4 for filtered data. Lines 5 and 6 are PCFG-generated sets,
with and without interlingua filtering.

Several immediate conclusions can be drawn. First, as shown by line 1 in
Table 2, PCFG generation is vastly superior to CFG. Given that CFG-generated
data clearly did not deliver interesting performance, we only used PCFG-generated
data for the other experiments.

A more interesting result (line 2 in Table 2) is that even the best SLM trained
on PCFG-generated data (line 6 in Table 1) is not clearly better than the one
trained directly from the original “seed” corpus (line 2, same table). The PCFG-
generated data produces a better WER; however, its SER is significantly worse.

Alhough interlingua filtering does result in some improvement (lines 4 and 5
in Table 2), it does not have a very large effect on PCFG-generated data, and
in fact the difference in SER is not significant.

Finally, lines 6 and 7 in Table 2 show that the plain GLM recognizer pro-
duces significantly better performance than any of the other versions. It should
be noted, however, that the generated training sets produced in these first exper-
iments are quite small. The next set of experiments investigates what happens
as they are made larger.

6 To test for the possibility of bias in the truncated unfiltered corpora, we created both
“head” (taken from the beginning of the larger file) and “tail” (taken from the end)
versions of the needed size. Performance on the head and tail versions was nearly
the same, leading us to conclude that it is unlikely that the truncation procedure is
creating a skewed corpus. The head versions are used in the paper.



Version size WER SER

1 seed corpus GLM 948 21.96% 50.62%
2 seed corpus SLM 948 27.74% 58.40%
3 CFG/unfiltered 4281 49.0% 88.4%
4 CFG/filtered 4281 44.68% 85.68%
5 PCFG/unfiltered 4281 25.98% 65.31%
6 PCFG/filtered 4281 25.81% 63.70%

Table 1. Recognition performance for SLMs trained on different types of generated
data. “Size” = number of utterances in training set; “WER” = Word Error Rate on test
set of in-coverage and out of coverage material; “SER” = sentence error rate on test
set of in-coverage and out of coverage material. GLM results included for comparison

First Second Score Significance

1 CFG/unfiltered PCFG/unfiltered 12–199 P < 0.001
2 seed corpus SLM PCFG/filtered 87–44 P < 0.001
3 seed corpus SLM CFG/unfiltered 244–15 P < 0.001
4 CFG/unfiltered CFG/filtered 27–49 P < 0.05
5 PCFG/unfiltered PCFG/filtered 16–29 not significant
6 seed corpus GLM seed corpus SLM 124–47 P < 0.001
7 seed corpus GLM PCFG/filtered 142–36 P < 0.001

Table 2. Significance of differences between some of the versions of the recogniser
listed in Table 1, according to the McNemar sign test performed on SER. Significantly
better results are marked in bold.

3.2 Increasing the size of the training set

When SLMs are trained on human-generated data, performance usually improves
for some time as more data is added. A common rule of thumb when building
commercial SLM-based systems is that one should aim to collect about 20 000
utterances. Tables 3 and 4 presents results for SLMs trained off PCFG-generated
corpora of increasing size. As in the first set of experiments, unfiltered data sets
were truncated to make them equal in size to the corresponding filtered ones;
the labels “50K”, “1000K” and “1500K” indicate the number of utterances in
the original unfiltered PCFG-generated set, prior to truncation. The amount of
training data was incremented until addition of data no longer resulted in an
improvement in the error rates.

The recognizers trained on filtered data continued to improve as we increased
the size of the training set (lines 1 and 2, Table 4), though the improvement
between the largest set (497 798 utterances) and the second-largest (331 328 ut-
terances) was not significant. With unfiltered data, we were surprised to discover
that moving from 331328 utterances to 497 798 utterances actually degraded per-
formance (line 4, Table 4). It is not clear why this should be, but we can at least
note that the filtering operation appears to make the data less noisy.



Version size WER SER

1 seed corpus GLM 948 21.96% 50.62%
2 seed corpus SLM 948 27.74% 58.40%
3 50K PCFG/unfiltered 16 619 24.84% 62.47%
4 50K PCFG/filtered 16 619 23.80% 59.51%
5 1000K PCFG/unfiltered 331 328 24.12% 58.77%
6 1000K PCFG/filtered 331 328 23.62% 57.28%
7 1500K PCFG/unfiltered 497 798 24.38% 59.88%
8 1500K PCFG/filtered 497 798 23.76% 57.16%

Table 3. Recognition performance as training set size increases. “Size” = number
of utterances in training set; test set includes both in-coverage and out of coverage;
“WER” = Word Error Rate; “SER” = sentence error rate

First Second Score Significance

1 50K PCFG/filtered 1000K PCFG/filtered 22–40 P < 0.05
2 1000K PCFG/filtered 1500K PCFG/filtered 4–5 not significant

3 50K PCFG/unfiltered 1000K PCFG/unfiltered 22–52 P < 0.001
4 1000K PCFG/unfiltered 1500K PCFG/unfiltered 11–2 P < 0.05

5 1000K PCFG/unfiltered seed corpus SLM 68–71 not significant
6 1500K PCFG/unfiltered seed corpus SLM 68–80 not significant
7 1500K PCFG/filtered seed corpus SLM 75–65 not significant

8 1500K PCFG/filtered 1000K PCFG/unfiltered 27–14 P < 0.05

9 1000K PCFG/unfiltered seed corpus GLM 33–99 P < 0.001
10 1500K PCFG/unfiltered seed corpus GLM 32–107 P < 0.001
11 1500K PCFG/filtered seed corpus GLM 36–89 P < 0.001

Table 4. Significance of differences between some of the versions of the recogniser
listed in Table 3, according to the McNemar sign test performed on SER. Significantly
better results are marked in bold.

The best recognizer trained on unfiltered data (line 5, Table 3) had lower
WER than the “seed corpus” SLM recogniser (line 2, same table). SER, however,
was almost the same between these two versions, and the difference was not
significant (line 5, Table 4). The best recognizers trained on filtered data (lines 6
and 8, Table 3) did better, and outscored the “seed corpus” SLM on both WER
and SER. The difference on SER, however, was again not significant (line 7,
Table 4). The difference between the best filtered and the best unfiltered versions
was significant (line 8, Table 4), again supporting the claim that filtering helps.

In terms of both WER and SER, however, all versions were still clearly
inferior to the GLM recognizer (lines 9–11, Table 4). Since the superiority of the
GLM is most marked on in-coverage data, our third set of experiments focussed
on this.



3.3 In-coverage performance

The third and final set of experiments measured performance only on the 514-
utterance subset of the data that was within the coverage of the GLM. As
pointed out earlier, comparisons between GLM and SLM models depend heavily
on the mix of in-coverage and out of coverage data encountered in the test data.
Performance of both models is generally dismal on out-of-coverage data, and
consequently not very interesting; performance on in-coverage data is a more
useful metric. The results of these tests are shown in Tables 5 and 6.

The relationships between most of the scores are similar to those in Table 3
above. Two points are worth noting. First, as expected, restriction to in-coverage
data increases the difference between the GLM recognizer and the others in terms
of both WER and SER; for both metrics, we see a relative decrease of over 35%
between results for the GLM and the best of the other versions. The second
point, rather more interestingly, is that the best SLM version is now the one
created from filtered PCFG-generated data (line 8, Table 5). This version is
significantly better than the “seed corpus” SLM (Table 6, line 7).

Version size WER SER

1 seed corpus GLM 948 7.00% 22.37%
2 seed corpus SLM 948 14.40% 42.02%
3 50K PCFG/unfiltered 16 619 14.13% 46.11%
4 50K PCFG/filt 16 619 12.76% 40.86%
5 1000K PCFG/unfiltered 331 328 11.83% 38.91%
6 1000K PCFG/filtered 331 328 11.21% 36.58%
7 1500K PCFG/unfiltered 497 798 12.35% 40.66%
8 1500K PCFG/filtered 497 798 11.25% 36.19%

Table 5. Recognition performance as training set size increases, on in-coverage material
only. “Size” = number of utterances in training set; “WER” = Word Error Rate; “SER”
= sentence error rate

4 Summary and Conclusions

The idea of creating a statistical language model by using a grammar to generate
training data has been known for some time, but previous attempts to evaluate
it objectively have run into methodological difficulties. The study we have pre-
sented here has solved what we view as the key problem. By using the trainable
Regulus grammar-development framework, we have been able to quantify the
data that was used to create the grammar. This has made it possible for us to
compare, on the one hand, the indirect method of using the data first to create
a grammar, which then creates training data for an SLM, and on the other the
direct method of simply creating an SLM from the original seed corpus. We have



First Second Score Significance

1 50K PCFG/filtered 1000K PCFG/filtered 16–38 P < 0.01
2 1000K PCFG/filtered 1500K PCFG/filtered 2–4 not significant

3 50K PCFG/unfiltered 1000K PCFG/unfiltered 15–52 P < 0.001
4 1000K PCFG/unfiltered 1500K PCFG/unfiltered 11–2 P < 0.05

5 1000K PCFG/unfiltered seed corpus SLM 69–53 not significant
6 1500K PCFG/unfiltered seed corpus SLM 68–61 not significant
7 1500K PCFG/filtered seed corpus SLM 74–44 P < 0.01

8 1000K PCFG/unfiltered seed corpus GLM 13–98 P < 0.001
9 1500K PCFG/unfiltered seed corpus GLM 12–106 P < 0.001
10 1500K PCFG/filtered seed corpus GLM 17–88 P < 0.001

11 1500K PCFG/filtered 1000K PCFG/unfiltered 25–11 P < 0.05
Table 6. Significance of differences between some of the versions of the recogniser
listed in Table 5, evaluated on in-coverage data only, according to the McNemar sign
test performed on SER. Significantly better results are marked in bold.

also compared the utility of generating SLM training data using CFG and PCFG
versions of the grammar, investigated the effect of filtering the generated data
using the MedSLT interlingua, and looked at the relationship between the size
of the generated training set and the quality of the SLM it produces. Our exper-
iments have used English grammars and data from the Open Source MedSLT
project.

The key result, as we see it, is that the indirect method of constructing
the SLM actually turns out to be only marginally better than the direct one.
When measured on the whole dataset (Tables 3 and 4), several of the versions
produced better WER. However, only the best one yielded any reduction in
SER, this reduction was not statistically significant, and producing it required
the extra interlingua-based filtering step. This is consistent with the intuition
that the GLM grammar essentially contains only a little more information than
the corpus used to create it. The SLM trained from the PCFG-generated corpus
does in fact produce a slight improvement over the one trained from the “seed”
corpus. We hypothesize that this improvement is due to a combination of two
factors. First, the PCFG generation process probably helps, in effect, to smooth
the training data; second, it seems reasonable to believe that the general resource
grammar used to build the GLM contributes at least some information.

Restricting evaluation only to in-coverage data did finally produce a result
where an SLM recognizer trained on generated data significantly outperformed
the one trained on the seed corpus. This is again, unfortunately, still not very
interesting, since the main point of the SLM is to achieve greater robustness
on out-of-coverage material; as we had expected, the GLM recognizer strongly
outperformed all the SLM versions on the in-coverage material.

An incidental result that we found interesting was the large difference be-
tween the models trained on PCFG-generated data and those trained on CFG-
generated data. In retrospect, this should not have been entirely surprising. How-



ever, looking at previous work, it is worth noting that although [11] used PCFG
generation, [12] appeared not to. The experiments where we increased the size
of the generated corpus suggest that one needs to produce quite a large amount
of data, on the order of hundreds of thousands of sentences, before performance
tops out.

In conclusion, we think we can reasonably claim to have put the idea of
using grammars to create SLM training data on a sounder theoretical footing.
Although the results reported here are more negative than positive, we hope
that the methodology we present will open new possibilities for research in this
area.
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