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1.1 Introduction

This technical report is based on a component model for distributed components
called GCM for Grid Component Model. We present here this component model,
its reference implementation based on the Java middleware ProActive, our spec-
ification language JDC adapted to distributed components, and the associated
specification platform: Vercors. Our aim is, from the specification of components
and their behaviour, to be able to both verify properties of this behaviour and
generate real GCM components.

The OASIS team works in the area of distributed systems, with a stress
on programming methodology and tools for computing grids. Analysing the be-
haviour of distributed systems always has been more difficult than for traditional
systems, because of the complexity of temporal interactions between remote
parts of the application. We base our programming model on active objects:
each active object has its own (and unique) thread, processing asynchronous
method calls on the object. This model is intended to ease the analysis of con-
currency by clearly identifying entry points for communications and limiting
the concurrency aspects to remote method calls on the same object. Moreover,
structuring distributed systems using components is somewhat better, because it
requires that interaction points (service points, but also required interfaces) are
well defined. Additionally, having well-defined components boundaries reduces
the amount of information that one component needs to have of its environment.

The active object paradigm together with a distributed hierarchical compo-
nent model provide convenient abstractions that help programmers understand
the interactions between their different pieces of codes. Indeed in GCM/ProAc-
tive communication and concurrency is provided by asynchronous method calls
between well-defined interfaces, and transparent channels transmitting the re-
sults of those calls.

Unfortunately, developers still have to face non-trivial runtime incompatibili-
ties when assembling off-the-shelf components. These incompatibilities arise due
to the lack of a precise dynamic specification of the component behaviour (the
protocols for inter-component communication). In fact, state-of-the-art imple-
mentations of component models such as Fractal [1] and the CORBA Component
Model [2] only consider interface type-compatibility for binding interfaces.



Nonetheless, a much more precise, sound static compatibility check of bound
interfaces can be achieved if behavioural information is added to the compo-
nents. In such effort, we proposed in [3] to attach behaviour as part of the archi-
tecture specification, defined in terms of parameterized networks of transition
systems. The compatibility between these behaviours could be checked using
model-checkers as we did in [4]. In the same spirit, “behavior protocols” [5] and
“component-interaction automata” [6] are ongoing research projects with similar
goals. They both adopt a simpler model, for example the “behavior protocols”
framework uses a simple regular-language to describe traces of the component
behaviour (without data), while we are able to take into account an abstraction
of the data-flow. A major originality of our work is that we target distributed
component systems communicating by asynchronous method calls with futures
(see Section 1.2.1). More specifically we have designed specific constructs for
programming computing Grid applications.

One question that may rise is why to create a new specification language
when there are plenty available, some of them accepted in the industry as stan-
dards. Some of them, like the ISO language LOTOS, are very expressive both
on the side of describing parallelism and synchronisation and on the side of data
types. We argue that none of them fits well when it comes to distributed com-
ponents (DCs), like the ones used in Grid computing to aid software design. In
Grid computing, latency plays a major role, so asynchrony is a must for opti-
mum resource usage. Additionally, designs usually exploit physical symmetries
but are often obstructed by specification languages expressiveness. For exam-
ple, in Fractal’s standard Architecture Description Language (ADL), it is not
possible to define multiple components (i.e., sets of identical components) and
bindings between them in a natural way. Moreover, as DCs may be deployed
over thousands of machines, collective interfaces have been defined as an ex-
tension of “classical” component models to address scalability of both designs
(through more expressive and compact schemes) and implementations (through
performance optimisations such as multicast and gathercast). Last, most existing
models focus only on the functional (business) behaviour, whereas we are inter-
ested in the non-functional behaviour as well. Non-functional behaviour includes
mainly life-cycle and reconfiguration aspects such as replacing components and
dynamically creating components. For the sake of size, this article will only make
short references to non-functional features when required.

In addition to the GCM component model and its implementation in ProAc-
tive, we propose here a new specification language called JDC (for Java Dis-
tributed Component language) for answering requirements of DC applications,
with stress on Grid programming. Part of this language may also be specified
as UML2.0 component diagrams and state-machines; we have developed a tool
named CTTool for editing those diagrams and interfacing with verification tools.
Last, from the JDC specification of CoCoME, we have derived an implementa-
tion using the ProActive middleware.

In this technical report, we shall:
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– introduce the Grid Component Model (GCM), its reference implementation
with the ProActive middleware, the JDC specification language, and the
CTTool diagram editor;

– present each JDC feature with examples using small pieces of CoCoME;
– give an integrated example of one of the CoCoME components;
– present and comment the implementation of the CoCoME we realised with

GCM/ProActive;
– explain how CoCoME requirements can be checked from the JDC specifica-

tion, using our verification platform.

In addition, the case-study is available at our website 1, including the JDC
specification, the CTTool diagrams, and a GCM/ProActive implementation.

1.2 Component Model

In this section, we first present the GCM component model and its ProActive im-
plementation. Then we give a short description of our low-level semantic model,
called pNets [7]. Then we described the JDC specification language, giving its
syntax and an informal semantics, and finaly present the CTTool diagram editor.

1.2.1 The Grid Component Model (GCM)

The Grid Component Model (GCM) [8] is a novel component model being de-
fined by the european Network of Excellence CoreGrid and implemented by the
EU project GridCOMP. The GCM is based on the Fractal Component Model [1],
and extends it to address Grid concerns.

Fractal is a hierarchical component model, meaning that every component is
either a composite, i.e. it is composed of other components (and thus its content
is known), or primitive if its content cannot be decomposed. Fractal components
interact through interfaces which correspond to object interfaces, so interac-
tions between components are method calls. Server interfaces receive invoca-
tions, whereas client interfaces send invocations. A general view of a composite
component is seen in Figure 1. Interfaces on the left side are server interfaces,
on the right side client interfaces, and on top non-functional server interfaces.

From Fractal, GCM inherits a hierarchical structure with strong separation
of concerns between functional and non-functional behaviours. For example, it
defines non-functional interfaces managing the application life-cycle and deploy-
ment. GCM also inherits from Fractal introspection of components and reconfig-
uration capabilities, mainly consisting in the possibility to change the content of
a composite component and the bindings between components. Grids consider
thousands of computers all over the world, for that, GCM extends Fractal using
asynchronous method calls for dealing with latency. GCM also aims at support-
ing streaming and event-based communications. Grid applications usually have
numerous similar components, so the GCM defines collective interfaces which

1 http://www-sop.inria.fr/oasis/Vercors/Cocome/
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Fig. 1. A composite component as defined in Fractal Specification

ease design and implementation as they provide some synchronisation and dis-
tribution capacities. There are mainly two kinds of collective interfaces in the
GCM: multicast interfaces that distribute one message with its parameters to a
set of destinations; and gathercast interfaces that synchronise and gather a set
of messages with their parameters. A client interface may be a multicast inter-
face, meaning that a call toward this interface can be distributed to many server
interfaces depending on the distribution used. Similarly, a server interface may
be a gathercast interface, meaning that multiple client calls will be synchronised
and a single call will be performed towards the service component.

For adaptivity purposes, the GCM first extends the reconfiguration capabil-
ities of Fractal to the non-functional aspects: the control of a component can be
reconfigured dynamically, moreover, the GCM specifies interfaces for the auto-
nomic management and adaptation of components.

The Architecture Description Language (ADL) of both Fractal and the GCM
is an XML-based format, that contains both the structural definition of the sys-
tem components (subcomponents, interfaces and bindings), and also the defi-
nition of so-called virtual nodes (VN) that are an abstraction of the physical
infrastructure on which the application will be deployed: the ADL only refers
to an abstract architecture, and the mapping between the abstract architecture
and a real one is given separately as a deployment descriptor.

1.2.2 A GCM Reference Implementation: GCM/ProActive

A GCM reference implementation is based on ProActive [9], an Open Source
middleware. In this implementation, an active object is used to implement each
primitive component and each composite membrane. Although composite com-
ponents do not have functional code themselves, they have a membrane that en-
capsulates controllers, and dispatches functional calls to inner subcomponents.
As a consequence, this implementation also inherits some constraints and prop-
erties w.r.t. the programming model:

4



– components communicate through asynchronous method calls with trans-
parent futures. These futures are first order objects: they can be forwarded
to any component in a non-blocking manner;

– there is no shared memory between components;
– a single control thread is available for each component, either primitive or

composite.

To ensure causal ordering of requests, method calls use a rendez-vous proto-
col: the caller is momentarily blocked while requests are en-queued in the callee
(server) side, and a future is created as a placeholder for the returned result.
Then, the caller’s execution may freely continue up to a point where the con-
crete value of the result is needed. At this moment it is blocked until the concrete
value is available in a mechanism called wait-by-necessity. Therefore, there is an
implicit data-flow synchronisation generated by the flow of futures. A precise
operational semantics of ProActive is given by the ASP-calculus [10, 11]; it al-
lows the proof of generic and important properties of ProActive’s constructs on
top of which we base our specification language.

Each primitive component is associated to an active object that should be
written by the programmer (or generated by a JDC specification, as we will
see in the following), whereas the active object managing a composite is generic
and provided by the GCM/ProActive platform. Like in Fractal, GCM/ProAc-
tive component interfaces are realised by object interfaces. The particularity
of GCM/ProActive is that those method calls are necessarily asynchronous, a
method call on a server interface adds a request to its request queue. If this
component is a composite, then it should simply forward the request to the con-
tained component that is connected to this server interface. If the component is
a primitive, then the required functionality should be addressed by the active
object encapsulated in the primitive, so the request will be treated locally. Most
of the time, requests are served in a FIFO order but any service policy can be
specified when programming active objects (that is for primitive components),
by writing a specific method called runActivity(). Note that futures create
some kinds of implicit return channels, which are only used to return one value
to a component that might need it. One particularity of this approach is that it
unifies the concept of component with the unit of distribution and parallelism.

Indeed, one essential property of ProActive, inherited from the ASP calculus,
is that the global behaviour of a ProActive application is totally independent
of the physical localisation of active objects and components on a distributed
architecture. This allows us to totally separate the deployment file from the
system specification: the deployment is one part of the implementation, and is
isolated in a specific file so that the application need not be changed when run
on different infrastructures (even going from a single JVM on one machine to a
full multi-site heterogeneous grid of hundreds of machines).

1.2.3 pNets and Behavioural Models

In a previous work [7] we introduced “Parameterized Networks of Transition Sys-
tems” (pNets), as a powerful model and a generic low-level formalism, able to ex-
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Fig. 2. A partial pNets model of CoCoME

press communicating processes with value passing and parameterized topologies
of processes. Parameterized synchronisation vectors allow to encode many dif-
ferent synchronisation and communication mechanisms amongst asynchronous
processes.

We have shown how to describe the behaviour of ProActive’s active objects
with pNets. Then, in [12, 13] we synthesised a behavioural model for GCM/ProAc-
tive components, including their functional and non-functional behaviour. In
Figure 2, we provide a partial model of CoCoME in pNets. Components are rep-
resented as parameterized processes, n being a parameterization over the number
of CashDesks and of CashDeskChannels for representing multiple components.
Note that this parameter is also used to provide multiple ports (collection inter-
faces in GCM language). Transitions encode communication with value passing,
and internal actions (tau) provide both the hiding mechanisms necessary for
component visibility rules, and the non-determinism required by specification-
level abstractions. Other processes appear as additional transition systems, for
example the Queue which encodes part of the ProActive’s behaviour. Then, the
automaton representing the Coordinator component is explicitly given: first it
synchronises with the Queue for serving requests; then synchronises with the
argument sent; finally it may non-deterministically restart its functional be-
haviour, enable a Cashdesk, or disable a CashDesk. For that, it synchronises
with an arbitrary port within expressModeControlIf with the ANY keyword.
Note that this port is parameterized and the index is used to address a specific
CashDeskChannel. We do not go deeper into the pNets model in here, however
the interested reader may refer to [7].

In each of these applications, the models express potentially infinite au-
tomata. In theory this allows us to apply many different proof methods, includ-
ing inductive theorem proving techniques, state-of-the-art engines implementing
decision procedures for decidable fragments of predicate logics, or for regular
structures. In practice, the current version of our verification platform only uses
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explicit-state model-checkers. For those, we first transform the pNet model into
a network of finite Labelled Transition Systems (LTSs), using abstractions based
on finite partitions of the parameter domains.

The pNet formalism is too low-level to be used directly as a specification
language, and lacks the high-level concepts particular to the different context in
which we want to use it. But in [13] we have shown that it plays an important role
as an intermediate format between the platform tools; it can be viewed as the
low-level semantic notation expressing both behaviour, structure and synchro-
nisation of our components. This pNet model is the main intermediate format
used by our tools to interface with the verification tools (see Section 1.4.1).

1.2.4 The Java Distributed Component Specification Language
(JDC)

In order to bridge the gap between an architecture specification and a Java
implementation, we have defined JDC for specifying distributed components.
The JDC is meant to be used by developers at the early stages of conception of
a component or of an application. A JDC specification will be used:

– on one hand to check the correctness of the component structure: model-
checking against user requirements or scenarios, and against the global black-
box specification of composite components, correct assembly of components,

– on the other hand to generate ADL definitions for the composite components
and Java skeleton code for each of the primitive component, in which the
developer will only need to fill-in the body of service methods.

In the remaining of this section we describe the syntax of JDC, introducing
one by one its main concepts (but without going too deep in the details of
the grammar). For each construct we refer to lines of code within the following
sections in which an example can be found.

Components: JDC’s main construct reflects the structure of a component: a
component declaration comprises a part defining its external view, that is the
definition of its interfaces and the specification of the black-box behaviour (inter-
action between services). For composite components, the declaration also com-
prises the definition of its architecture, that is the declaration of subcomponents
and of their bindings. See an example in lines 60-66, page 15.

In addition, standard Java files are used to define the component interfaces
signatures (as Java interfaces), and user-defined data-types (as Java classes).

In the following abstract syntax, the interface section is mandatory, the ser-
vices section is mandatory for primitives and optional for composites, the archi-
tecture section is mandatory for composites. Remark that a component can be
seen as a primitive in a JDC specification, and later be implemented by a com-
posite. In that case the behavioural specification of this component will allow
for a formal check of compatibility (or substitutability in the vocabulary of [6]).
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1 component <NAME> (<Params>) {
interfaces

3 <interface> *
services

5 <service> *
architecture

7 contents
<component> *

9 bindings
<binding> *

11 endComponent}

Interfaces: Interface definitions come in two parts: the first is a declaration
within the JDC component structure, specifying each server (provided) and
client (required) interface of the component, together with its type, its name,
and optionally its parameter list. See lines 62-64.

12 <interface> := (server|client) interface <InterfaceType> <InterfaceName>[<Params>]

The second part is a standard Java Interface that defines the interface type,
including the list of methods with their signature. This corresponds more gen-
erally to the Interface Definition Languages (IDLs) of some other component
frameworks. See lines 67-78.

Services and policies: This section of the component specification defines the
behaviour acceptable at the interfaces of the component. That is to say, how
the component provides services when viewed as a black-box. This includes the
required protocols, expressed as temporal ordering of the interactions (method
calls) on the interfaces, but also the dataflow induced by the parameters of those
methods, and that can be relevant to the behaviour logics. See lines 79-114.

<service> =
14 service "{"

<Local Variable Declaration> *
16 policy "{" <RegularExpression> "}" *

<Service Method Declaration> *
18 <Local Method Declaration> *

"}"

The protocols themselves are (non-deterministic) state-machines, expressed
using regular expressions. Their events are either service instructions, or direct
local method calls. The service instructions allow the user to specify, depending
on the internal state of the protocol, which kind of methods to select, and in
which order to pick them from the queue. See lines 81-85 and 201-209.

20 <regularExpression> =
<serveMode> "(" <filter> * ")"

22 | <Method Call>
| <regularExpression> ";" <regularExpression>

24 | <regularExpression> "|" <regularExpression>
| <regularExpression> "*"

26

<filter> = <InterfaceName>
28 | <InterfaceName> "." <MethodName>

Then for each method in each server interface, we need a method declara-
tion, that will capture at least the relevant dataflow between input parameters
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and results of the method. The method body contains Java code, with even-
tual calls to client interface methods, and possibly a special “oracle” function
called ANY(..) that non-deterministically returns an arbitrary value of a given
class. Service methods and local methods are not authorised to access the re-
quest queue. Their bodies consist of standard Java syntax (we do not provide a
grammar for them). See e.g. lines 209-223.

Subcomponents and bindings: In this part of the specification, we specify the
subcomponents of a composite component, as instances of components (types)
that may be defined separately (see lines 120-126), and bindings (lines 127-158)
connecting subcomponent’s interfaces with internal interfaces of the compos-
ite (import and export bindings in Figure 1), and connecting subcomponents
together (normal bindings in Figure 1).

For grid structures, it is important to be able to have indexed sets of sub-
components within a composite, and to have syntax to specify their bindings in
terms depending on their indexes. For that, parameters may be defined within
the for statement (as Params), and used within the bind statement as a subset
of these parameters in the ActualParams. See lines 134-136.

<component> =
30 <ComponentType> "(" <Params> ")" <ComponentName>

32 <binding> =
bind "(" <ComponentName>"."<InterfaceName>, <ComponentName>"."<InterfaceName> ")"

34 | for "(" <Params> ")" "{"
bind "(" (<ComponentName> | <ComponentName> "[" <ActualParam> "]" ) "."

36 (<InterfaceName> | <InterfaceName> "[" <ActualParam> "]" ) ","
(<ComponentName> | <ComponentName> "[" <ActualParam> "]" ) "."

38 (<InterfaceName> | <InterfaceName> "[" <ActualParam> "]" ) ")"
"}"

Exceptions: For dealing with latency, GCM provides asynchronous communica-
tions and exception handling. Exceptions typically influence the control flow of
the application, and therefore are important to consider within a JDC specifica-
tion. JDC allows for asynchronous method calls with exceptions, but with some
restrictions: the control flow may not leave the try block where the exception
should be thrown. For that, before leaving a try, all pending exceptions act as a
barrier until its safe execution path is known. Additionally, a future which result
comes from a method with exceptions cannot be sent as argument to another
component, i.e., it is implicitly blocked before calling the method until the re-
turn value is known. Below, we show the abstract syntax of both method with
exception definition and a control block. The reader should find it familiar to
Java. See lines 102-112.

40 <ReturnType> <MethodName>(<Params>) throws "(" <ExceptionType> ")" *

42 try "{"
<UserCode> *

44 "}"
catch "(" <ExceptionType> <ExceptionName> ")" "{"

46 <UserCode> *
"}"
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Parameters and collective interfaces: Another feature dealing with GCM is col-
lective interfaces. There are multicast and gathercast interfaces for providing
distribution and synchronisation of data. In JDC, these can be defined both at
a black-box level or at an architecture level. Moreover, the designer also defines
the parameter distribution that applies. For example, a multicast interface may
broadcast a same method call to multiple components. The abstract syntax is
as follows:

48 multicast "(" <ComponentName>"."<InterfaceName>"," <DistributionType> ")" "{"
bind "(" <ComponentName>"."<InterfaceName>"," <ComponentName>"."<InterfaceName> ")" *

50 "}"

Data abstraction: Apart from the specific component structure constructs, the
JDC syntax is intentionally very close to the Java language. This is mainly be-
cause all code within the JDC specification uses real Java datatypes to keep
compatibility with Java. However, if one wants to verify the specification (us-
ing model-checking or equivalence-checking), it is mandatory to provide a data
abstraction of every user-class used in the specification into (first order) Sim-
ple Types. This is particularly important to avoid usual state-explosion during
the model-checking of the system, and to allow exhaustive search of execution
paths. Moreover, Simple Types are the only datatypes accepted by pNets, for
more fundamental reasons: this is the basis for the preservation of safety prop-
erties by finite abstraction in our verification method. So every class in the JDC
specification must be mapped towards Simple Types, and this mapping must be
an abstract interpretation. See an example in lines 224-240.

These are given in Java classes and may be used within a JDC specification.
Concretely, they are:

– integers, enumerated types, strings, booleans;
– intervals of integers;
– records of simple types;
– arrays of simple types.

class <ClassName> "{"
52 (public | private | protected)":" *

<ClassType> <FieldName>";" *
54 <ClassType> <FieldName> abstracted as <SimpleType>";" *

<ReturnType> <MethodName> "(" <Params> ")" <Exception>";" *
56 <ReturnType> <MethodName> "(" <Params> ")" <Exception> abstracted as "{"

<UserCode> *
58 "}" *

"}"

In the abstract syntax above, data abstraction is done over all methods and
attributes used within the JDC specification. For these, the keyword abstracted

as is used to map whatever method or attribute into Simple Types. In the
method body, usual JDC code can be used as far as the final result is a Simple
Type, and all data used is mapped to Simple Types as well. Other methods and
attributes not used within the specification can be left unspecified as they are
not considered by neither code generation nor model generation.
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Fig. 3. The CTTool UML2.0 modelling software

1.2.5 UML Component Diagrams, and the CTTool Editor

The JDC is a textual language, certainly adequate for trained developers, and
for specifying big and/or complex systems. However, for casual users, or for fast
design in the first steps of the development cycle, one may prefer a graphical
language. With this goal, we have built a UML editor, called CTTool (Figure
3), dedicated to component specification, and providing an integrated interface
with a model generator and a model checker.

The main constructs can be found in Figure 4.

Component Diagram

Component

IN port

OUT port

Connector

Delegate connector

Interface signature

State Machine Diagram

(named) State

Start/Stop points

Submachine

Receive/Send message

Action

Choice

Non-determinism

Fig. 4. Component and State Machine Diagram Constructs

CTTool was developed starting from a similar software named TTool, devel-
oped by a research team at ENST-Paris [14]. TTool is more specifically dedicated
to the design and verification of embedded systems, or systems on chips. Com-
pared with TTool, CTTool features UML2.0 diagrams (component and state-
machines) with hierarchical designs (Fig. 4); it inherits from the connection of
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TTool with the CADP verification tools [15], through generation of LOTOS
code.

The current version of CTTool is an intermediate step, in the sense that
it has no primitive for specifying distributed features of our components, and
consequently no Grid specific primitive. Moreover the generated code has the
same synchronous semantics than the original TTool, so the proofs that one can
conduct in CTTool are only for synchronous components systems, rather than for
the asynchronous semantics of GCM/ProActive including asynchronous requests
and future values. We shall explain how this has influenced the verification of
the CoCoME scenarios in section 1.5.1

Still we found usefull to provide CTTool drawings, together with the corre-
sponding JDC code in the following pages. In future versions, CTTool will have
specific high-level constructs for distributed Grid applications (service policies,
multicast and gathercast communications, etc). It will certainly be re-engineered
to produce JDC code, or at least generate the proper asynchronous semantics in
the constructed models.

1.3 Modelling the CoCoME

We have chosen to include in detail the specification of two components, with the
required views of each, with the JDC text, and some of the CTTool diagrams as
illustrations. The remaining of the specification is given in the annex, although
without a detailed explanation. The first one is the (composite) CashDesk com-
ponent, for which we include and explain:

– its black-box view with the definition of external interfaces, and the specifi-
cation of its visible behaviour;

– its architectural view with its subcomponents and bindings;
– its GCM view, with excerpts of the generated ADL code.

The second one is the (primitive) CashBoxController component, with:

– its black-box view with its interfaces and behaviour, with much more details
on the definition of its service methods;

– no architecture as it is primitive;
– an abstraction specification of a user-defined datatype;
– pieces of generated Java/ProActive code;
– a fragment of its deployment specification.

Before starting with those examples of component specifications, let us define
what are the different views that we use.

1.3.1 Black-box View

We call black-box view of a component its externally visible architecture and be-
haviour. Therefore it includes the common part of both primitive and composite
component: list of its interfaces (defining which are client and server interfaces),

12



and definition of these interfaces (the Java methods and their signatures). The
black-box view allows to use the component without knowing anything of its
internals. This is usual in many programming languages when thinking simply
of (static) typing of the interfaces; but here we aim at dynamic compatibility
of components, so we need a precise enough specification of the protocol of its
interactions with other components, namely the temporal ordering of activation
of service methods, and of calls to external (client) methods. In such a proto-
col we include the synchronisation, control flow and data flow of the system, as
observed during communications between components.

In [13] we have shown how to specify both the functional and the non-
functional behaviour of GCM/ProActive components; however for the time be-
ing we focus only on the functional (also known as business) behaviour, leaving
the non-functional parts (life-cycle, bindings, reconfiguration management) to
further developments of the JDC.

1.3.2 Architectural View

The architectural view gives a one-level refinement of a component as a com-
position of subcomponents. For each one of these subcomponents, the designer
must provide its black-box view. Note that, when an architecture is provided for
a component, the policy section in the black-box definition is optional as it is
implicitly defined by the architecture.

From the user point of view, the architecture specification is a functional
delegation to subcomponents, similar to what the GCM ADL stands for. In it,
subcomponents and internally visible bindings of a component are defined (see
Figure 1); bindings can be either between the parent component and one of
its subcomponent (export binding), between a subcomponent and the parent
(import binding), or bindings between subcomponents (normal binding).

We did not use the GCM ADL for defining the architecture because we want
to provide more expressive power than usually expressed within an ADL. Typi-
cally, one may want to define dynamic architectures, i.e., systems with dynamic
instantiation of components. These kind of architectural specifications are not
meant to be captured by the GCM ADL, though they might be possible by
extending the language.

For the CoCoME model, we have specified the architecture, whenever given
in the CoCoME reference, of every component except for the Inventory. The
latter was given only a black-box specification to simplify the model. Within
this section we show the architecture of the CashDesk component.

1.3.3 GCM View

Our objective is to generate GCM components from the JDC specification. JDC
is rich enough to be able to generate automatically both the ADL describing
the structure of the application, and the skeleton of the primitive components
in ProActive.
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For the composite components, the ADL can be automatically inferred from
the architectural view presented above. For the primitive components, the ADL
mainly consists in the definition of interfaces and can be generated automatically.
The skeleton of the Java class implementing the primitive can be generated from
the JDC black-box specifying the behaviour of the component. The user then
only has to write the business code, resolving all the abstractions and non-
determinism present in the black-box definition.

Concerning non-functional aspects, they are not specified for now in the JDC.
Thus it is also the role of the programmer to provide and compose these aspects.
In general, most of those aspects are provided by the component middleware,
e.g. Fractal requires basic management controllers to be implemented by each
component. In most cases, dealing with non-functional aspects consists in in-
voking operations on these controllers. For the moment, those invocations have
to be performed manually by the programmer; but on the long term basis we
would like to include them in the JDC so that it is possible to study and verify
the interaction between functional and non-functional concerns.

The generation of code from the JDC specification is not working yet; thus
based on the JDC specification we wrote the GCM/ProActive code for the Co-
CoME example. This code consists of a set of composite components defined in
the ADL, and a set of primitive components written in Java and using ProActive.
Recall that, at deployment, a thread is created for each primitive and each com-
posite component, and those components communicate by asynchronous method
calls with transparent futures, leading to a parallel and distributed implementa-
tion of the application.

1.3.4 Deployment View

The deployment view of an application is out-of-scope for the JDC specification
as we leave it as a middleware concern. However, since the modelling of dis-
tributed aspects is an important part of a specification, this section outlines the
ProActive deployment scheme, and shows how the distribution nature of GCM
components can be captured. Further, using the CoCoME architecture as an
example, it is shown how to map the components to the physical infrastructure.

ProActive and GCM comprehensive deployment framework is based on the
concept of Virtual Node (VN). A VN is above all an application abstraction that,
at modelling or programming time, captures the distributed nature of a system.
Typically, a given application is specified to deploy on several VNs (e.g. each
component on a separate VN), each capturing a specific entity or related set of
entities of the application. At deployment, each VN is mapped to one or several
machines on the network, using appropriate protocols.

The number and characteristics of VNs are chosen by the application de-
signer, providing both guidance and constraints to be used and enforced at de-
ployment time. Both parallelism and de facto distribution can be captured by
VNs. Moreover, the designer can also specify multi-threaded constraints by us-
ing a single VN for several components, capturing a forced co-allocation. When
building composite components, one has the possibility to merge some inner VNs
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into a single one, specifying co-allocation of the corresponding inner components.
One also has the possibility to maintain at the level of the composite some of
the inner VNs, specifying an independent mapping of the corresponding inner
components to the physical infrastructure.

A VN has several characteristics. The most important is its cardinality, which
can be single or multiple. The former captures the fact that a single node of the
infrastructure has to be used to execute the corresponding component, the later
gives the possibility at deployment to map the component on several machines.
This powerful possibility is to be related to multicast and gathercast interfaces: a
collective interface often corresponds to a Multiple VN with the same cardinality.

At deployment time, all the VNs of the CoCoME specification will be mapped
to one or several machines of the physical infrastructure using an XML file. The
ProActive implementation makes it possible to choose from many protocols to
select and access the actual nodes (rsh, ssh, LSF, PBS, Globus, etc.), and to
control the number of components per machine, and per process (JVM).

1.3.5 Specification of the CashDesk Component

In this subsection, we specify the CashDesk component. We give its black-box
specification together with a matching architecture specification. Finally, we out-
line its implementation within the GCM/ProActive.

Black-Box View of the CashDesk The black-box of the CashDesk starts
by defining its server and client interfaces. In there, we see that the bankIf is a
collection interface as it addresses multiple banks, but method calls are routed
to one bank at a time. Note that CTTool’s diagrams do not have the definitive
method signatures as type-checking is still limited within the tool.
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60 component CashDesk(int numOfBanks) {
interfaces

62 server interface CardReaderControlIf cardReaderControlIf;
server interface ApplicationEventHandlerIf applicationEventHandlerIf;

64 client interface BankIf banksIf[numOfBanks];
// ... all 10 other interfaces

66 }

These interfaces must be properly defined. For example, in the code below we
see the definition of the ApplicationEventHandlerIf interface, which exposes
the full method signature using user-classes.

public interface ApplicationEventHandlerIf {
68 void saleStarted() throws NotIdleException;

void saleFinished() throws SaleNotFinishedException;
70 void cashAmountEntered(CashAmount moneyAmountEntered) throws NotPayingException,

WrongPaymentModeException;
void cashBoxClosed() throws NotPayingException, WrongPaymentModeException;

72 void creditCardScanned(CreditCardScanned creditCardScanned) throws
NotAcceptingCreditCardException, WrongPaymentModeException;

void pinEntered(PIN pin);
74 void paymentMode(PaymentMode paymentMode) throws WrongPaymentModeException;

void expressModeDisabled();
76 void expressModeEnabled();

void productBarcodeScanned(ProductBarcode barcode) throws ExceededNumberOfProducts;
78 }

No matter how the component is to be implemented (either by a primitive
or a composite component), in JDC it is mandatory to provide a behavioural
specification, either in the form of a black-box definition, or in the form of
its architectural implementation, or both. For this component, we provide a
black-box specification; this starts with the service policy defined with a regular
expression. In the case of the CashDesk, there are multiple services denoting that
there are multiple processes visible from the outside. This stands for a compact
representation of the interleavings admitted by the component.

services
80 service { // CardReaderController

policy {
82 ((emit() | serveOldest(cardReaderControlIf.expressModeDisabled))*;

serveOldest(cardReaderControlIf.expressModeEnabled);
84 serveOldest(cardReaderControlIf.expressModeDisabled))*
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}
86 void emit() {

if (__ANY(bool)) // non-deterministic choice
88 cardReaderEventIf.creditCardScanned(__ANY(CreditCard));

}
90 // ... cardReaderControlIf.expressModeEnabled

// ... cardReaderControlIf.expressModeDisabled
92 }

service { // CashDeskApplication
94 locals {

CashState cashState;
96 // ... other local variables

}
98 policy {

init(); expressModeDisabled();
100 serveOldest(applicationEventHandlerIf) *

}
102 void applicationEventHandlerIf.saleStarted() throws NotIdleException {

switch (cashState.getState()) {
104 case cashState.IDLE:

cashState = cashState.STARTED;
106 break;

case cashState.STARTED:
108 case cashState.PAYING:

throw new NotIdleException();
110 break;

}
112 }

// ... other methods
114 }

}

Note that each service defines its own service methods and possibly its own
local variables.

In Section 1.3.6 we illustrate different aspects of the behavioural specification.
Then in Section 1.4.2 we give example of code generated from the CashDesk

service definition.

Architectural View of the CashDesk As the black-box specification only
defines the externally visible behaviour and not how it is implemented, there
are, of course, several architecture definitions that match the same component’s
black-box specification. A possible architecture implementing the CashDesk is
shown in the following. Note that we added a logger just to trap and print
exceptions but it does not influence the component behaviour.

The first part of the architecture defines the subcomponents which compose
the component. When applies, they are provided with parameters for their cor-
rect deployment as with the CashDeskApplication.
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118 architecture CashDesk(int numOfBanks) {
contents

120 component CashDeskApplication(numOfBanks) application;
component CashReaderController cashReader;

122 component CashDeskGUI cashDeskGUI;
component cashBoxController cashBoxController;

124 component LightDisplayController lightDisplayController;
component PrinterController printerController;

126 component ScannerController scannerController;

Then, we define the bindings section exposing how the functional delegation
takes place, and synchronisations between components. Note that it is possible
to address either a specific component or a specific collection interface.

bindings
128 // application

bind(this.applicationEventHandlerIf, application.applicationEventHandlerIf);
130 bind(application.cashDeskConnectorIf, this.cashDeskConnectorIf);

bind(application.eventBusIf, this.eventBusIf);
132 bind(application.saleRegisteredIf, this.saleRegisteredIf);

134 // bind all bank interfaces
for (int i: numOfBanks) {

136 bind(application.banksIf[i], this.banksIf[i]);
}

138

// cashReader
140 bind(this.cashReaderControlIf, cashReader.controlIf);

bind(cashReader.eventIf, this.eventIf);
142

// cashDeskGUI
144 bind(this.cashDeskGUIControlIf, cashDeskGUI.controlIf);

146 // cashBoxController
bind(this.cashBoxControllerControlIf, cashBoxController.controlIf);

148 bind(cashBoxController.eventIf, this.cashBoxControllerEventIf);

150 // lightDisplayController
bind(this.lightDisplayControllerControlIf, lightDisplayController.controlIf);

152

// printerController
154 bind(this.printerIf, printerController.printerIf);

156 // scannerController
bind(scannerController.scannerIf, this.scannerIf);

158 }

The corresponding ADL file, in XML format, will be generated from this part
of the specification. It will then be used both to generate the synchronisation
structures for the model-checker, and as an input to the component factory of
ProActive at deployment time, but all this is left as future work for the moment.

GCM View of the CashDesk Now, we present a simplified ADL description
of the CashDesk component. It focuses on the CashDeskApplication subcompo-
nent, the other subcomponents being similar. The ADL description starts with
the definition of the external interfaces of the CashDesk component, together
with their roles (client or server).

<component name="CashDesk">
160 <interface signature="CashDeskLine.if.LightDisplayControlIf" role="server" name="

lightDisplayControlIf"/>
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<interface signature="CashDeskLine.if.CardReaderControlIf" role="server" name="
cardReaderControlIf"/>

162 <interface signature="CashDeskLine.if.CashDeskGUIIf" role="server" name="cashDeskGUIIf"/>
<interface signature="CashDeskLine.if.CashBoxControlIf" role="server" name="

cashBoxControlIf"/>
164 <interface signature="CashDeskLine.if.PrinterIf" role="server" name="printerIf"/>

<interface signature="CashDeskLine.if.ApplicationEventHandlerIf" role="server" name="
applicationEventHandlerIf"/>

166 <interface signature="if.CashDeskConnectorIf" role="client" name="cashDeskConnectorIf"/>
<interface signature="if.SaleRegisteredIf" role="client" name="saleRegisteredIf"/>

168 <interface signature="CashDeskLine.if.CardReaderEventIf" role="client" name="
cardReaderEventIf"/>

<interface signature="CashDeskLine.if.CashBoxEventIf" role="client" name="cashBoxEventIf"/>
170 <interface signature="CashDeskLine.if.ScannerEventIf" role="client" name="scannerEventIf"/>

<interface signature="if.BankIf" role="client" name="bankIf"/>
172 <interface signature="CashDeskLine.if.EventBusIf" role="client" name="eventBusIf"/>

Then the subcomponent CashDeskApplication is described by its external
interfaces, this component is a primitive one (line 180), so the path of its imple-
mentation is given (line 179).

<component name="CashDeskApplication">
174 <interface signature="CashDeskLine.if.ApplicationEventHandlerIf" role="server" name="

applicationEventHandlerIf"/>
<interface signature="if.CashDeskConnectorIf" role="client" name="cashDeskConnectorIf"/>

176 <interface signature="if.SaleRegisteredIf" role="client" name="saleRegisteredIf"/>
<interface signature="CashDeskLine.if.EventBusIf" role="client" name="eventBusIf"/>

178 <interface signature="if.BankIf" role="client" name="bankIf"/>
<content class="CashDeskLine.CashDesk.CashDeskApplication"/>

180 <controller desc="primitive"/>
</component>

182 <component name="CardReaderController"> ... </component>
<component name="LightDisplayController"> ... </component>

184 <component name="ScannerController"> ... </component>
<component name="PrinterController"> ... </component>

186 <component name="CashBoxController"> ... </component>
<component name="CaskDeskGUI"> ... </component>

Finally, the bindings of the CashDeskApplication are described, in this ex-
ample only two kinds of bindings are shown: import bindings like the first one,
and export bindings like the others.

188 <binding client="this.applicationEventHandlerIf" server="CashDeskApplication.
applicationEventHandlerIf"/>

<binding client="CashDeskApplication.cashDeskConnectorIf" server="this.cashDeskConnectorIf"
/>

190 <binding client="CashDeskApplication.saleRegisteredIf" server="this.saleRegisteredIf"/>
<binding client="CashDeskApplication.eventBusIf" server="this.eventBusIf"/>

192 <binding client="CashDeskApplication.bankIf" server="this.bankIf"/>
...

194 <controller desc="composite"/>
</component>

Deployment View of the CashDesk When defining the CashDeskLine com-
posite, a VN CashDeskLineVN, cardinality Multiple is specified as the composi-
tion of all the CashDeskVN. The effective cardinality of this VN is attached to
the number of cashDesks (numOfCashDesks in the specification).
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1.3.6 Specification of the CashBoxController Component

In this section, we specify the CashBoxController component. We give its black-
box view, but the architectural view does not apply because we do not decompose
the behaviour of the CashBoxController into subcomponents.

Black-Box View of the CashBoxController The component has a client
and a server interface, and defines a non-trivial service policy. The controller can
be seen as an active component in the sense that it triggers events regarding the
cashbox, so it is not awaiting for any signal to be received.

196 component CashBoxController {
interfaces

198 server interface CashBoxControlIf controlIf;
client interface CashBoxEventIf eventIf;

200

services
202 service {

policy {
204 ( eventIf.saleStarted(); eventIf.saleFinished();

( cashMode(); cashAmount(); serveOldest(controlIf.changeAmountCalculated);
eventIf.cashBoxClosed() )

206 |
( creditCardMode() )

208 )*
}

There are no state variables (variables defined within the “locals” block),
nevertheless the component is not stateless; the service policy implicitly defines
that the component cycles through some states, each one defining which are the
actions that the CashBoxController may do. For example, the component only
serves requests from the queue when a client is paying with cash; otherwise, the
component is seen as a machine sending events regardless of the environment
(as the environment does not take the hardware interaction into account).

The component defines local methods and service methods; the latter have
their method names prefixed by the interface they belong. For the method
changeAmountCalculated(..), and from the behavioural point of view, we are
only interested in the access to the variable sent as argument, but not what we
actually do with it; so the behavioural model can block the execution until the
concrete value of the variable is known.

// local methods
210 void cashMode() {

eventIf.paymentMode(new PaymentMode(CASH));
212 }

void creditCardMode() {
214 eventIf.paymentMode(new PaymentMode(CREDIT));

}
216 void cashAmount() {

eventIf.cashAmount(__ANY(CashAmount));
218 }

// service methods
220 void controlIf.changeAmountCalculated(CashAmount changeAmount) {

changeAmount.waitForValue();
222 }}

} // end of CashBoxController black-box definition
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There are some non-deterministic choices, both in the events that may be
sent, and in the data sent. For example, we do not know exactly which amount
the user paid, so we use the “oracle” function ANY(CashAmount) to choose any
value within the variable domain. It will be up to the data abstraction to define
this domain, or in the case of the implementation, to the programmer to define
its real value. A mapping of this class into Simple Types is given as:

224 public class CashAmount {
private double amount abstracted as enum {"ZERO", "NOT_ZERO" };

226

public __ANY() {
228 return new enum {"ZERO", "NOT_ZERO" };

}
230 public double getAmount() abstracted as {

return amount;
232 }

public void add(CashAmount purchasePrice) abstracted as {
234 if (this.amount == "ZERO" && purchasePrice.getAmount() == "ZERO")

amount = "ZERO";
236 else

// non-determinism within the data abstraction as a negative
238 // value could leave the amount in zero

amount = __ANY(CashAmount);
240 }}

GCM View of the CashBoxController Next, we give the implementation
of the CashBoxController primitive component. This Java code is to be instan-
tiated as an active object (in Java implementing the RunActive interface). The
active object implements the CashBoxControlIf server interface and contains
a field named cashBoxEventIf implementing the client interface of the compo-
nent. Finally, it also implements Fractal’s BindingController interface to allow
dynamic binding of its interfaces.

public class CashBoxController implements CashBoxControlIf, BindingController, RunActive {
242 public final static String CASHBOXEVENTIF_BINDING = "cashBoxEventIf";

private CashBoxEventIf cashBoxEventIf;
244

public CashBoxController () { } // empty constructor required by ProActive

Note that necessary hooks for Fractal controllers are implemented on the
form of the four first methods of the object. These are generated automatically.

246 // Implementation of the Controller interfaces
public String[] listFc () {return new String[] { CASHBOXEVENTIF_BINDING };}

248

public Object lookupFc (final String clientItfName) {
250 if (CASHBOXEVENTIF_BINDING.equals(clientItfName))

return cashBoxEventIf;
252 return null;

}
254 public void bindFc (final String clientItfName,final Object serverItf){

if (CASHBOXEVENTIF_BINDING.equals(clientItfName))
256 cashBoxEventIf = (CashBoxEventIf)serverItf;

}
258 public void unbindFc (final String clientItfName){

if (CASHBOXEVENTIF_BINDING.equals(clientItfName))
260 cashBoxEventIf = null;

}
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Recall that changeAmountCalculated is the only method of the server in-
terface, requests addressed to this component will be asynchronous calls to this
method. It corresponds to the same method as in the black-box view above.

262 // Implementation of the functional interfaces
public void changeAmountCalculated(CashAmount changeAmount) {

264 System.out.println(changeAmount.getAmount()); // the amount to be returned as change
}

Then, the service method in ProActive (runActivity) implements the ser-
vice policy. It is the kernel of a ProActive component as it exposes the compo-
nent’s behaviour, and is called by the middleware when the component is started.
It consists of a set of invocations on the client interface (cashBoxEventIf), to-
gether with a blocking service on the changeAmountCalculated method. This
method is a direct translation of the policy section of the black-box presented
above and should not be modified by the ProActive programmer.

266 public void runActivity(Body body) {
Service service = new Service(body);

268 while (body.isActive()) {
cashBoxEventIf.saleStarted();

270 cashBoxEventIf.saleFinished();
if ((new AnyBool()).prob(50)) {

272 cashMode();
cashAmount();

274 service.blockingServeOldest("changeAmountCalculated");
cashBoxEventIf.cashBoxClosed();

276 } else
creditCardMode();

278 }}

By contrast the service method and the local (private) methods that are
declared in the JDC (CashBoxController service declaration will contain the
true functional code of the component, and are directly modifiable.

private void cashMode() {
280 cashBoxEventIf.paymentMode(new PaymentModeImpl(PaymentModeImpl.CASH));

}
282 private void creditCardMode() {

cashBoxEventIf.paymentMode(new PaymentModeImpl(PaymentModeImpl.CREDIT));
284 }

private void cashAmount() {
286 cashBoxEventIf.cashAmountEntered(new CashAmountImpl(1000)); // the client paid 1000

}
288 } // end of CashBoxController implementation

Deployment View of the CashBoxController If we want to model a system
where a cashBoxController can be instantiated on its own processing element,
then a VN, for instance named cashBoxControllerVN, cardinality single has
to be specified and exported at the level of the CashDesk. At the next level, when
building the CashDeskLine component, the middleware will be able to take care
of transforming this VN into an appropriate VN at the composite level.

<exportedVirtualNodes>
290 <exportedVirtualNode name="cashBoxControllerVN">

<composedFrom>
292 <composingVirtualNode component="this" name="cashBoxControllerVN"/>

</composedFrom>
294 </exportedVirtualNode>
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</exportedVirtualNodes>
296 <content class="CashDeskLine.CashDesk.CashBoxController"/>

<virtual-node name="cashBoxControllerVN" cardinality="single"/>

1.4 Transformations

In this section we first describe the software tools that we are building for editing
and analysing JDC specifications and CTTool diagrams, and generating ProAc-
tive code skeletons. Then we explain on an example how we intend to generate
“safe by construction” code.

1.4.1 Tools Overview

Fig. 5. The Vercors platform

In Figure 5 we sketch the general architecture overview of the specification
and analysis platform that we are building, so-called Vercors. This figure does
not show the architecture of the current version of CTTool, that contains its
own model generation engine, and its own bridges [14] with the CADP provers
through intermediate LOTOS code.

A JDC specification can be edited directly in a text editor, or generated from
the diagrams of CTTool; but we also plan to develop an Eclipse plug-in that
will ease the JDC development, and give an integrated interface to the various
analysis and generation functions of the platform. For the moment, JDC has been
conceptually defined, but does not have any tool support yet, so the description
in this technical report is mostly left as mid-term future work. However, the
synchronous version of CTTool is operational and available at our website.

The first part of the platform deals with data abstraction: data types in a
JDC specification are standard, user-defined Java classes, but those must be
mapped to Simple Types before generating the behavioural models and running
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the verification tools. The abstraction is part of the JDC syntax, but the tool
will offer guidance to help define correct mappings that are correct abstract
interpretations. This phase ends-up with a “JDC Abstracted Specification” in
which all data are Simple Types, that are provided as a predefined library.

Such an Abstract Specification is then given as input to our model gener-
ator ADL2N [4], that implements the behavioural semantics of the language,
and builds a model in terms of pNets, including all necessary controllers for
non-functional and asynchronous capabilities of the components. Note that the
current version of ADL2N works on ADL and LOTOS files rather than JDC.
Additionally ADL2N implements a second step of abstraction, that uses finite
partitions of the Simple Types to build finite models for classical (explicit-state)
model-checkers. Potentially this step could be automatically derived from the
syntax of a formula. In any case the pNets objects are hierarchical and very
compact as in pNets datatypes are kept parameterized – not instantiated – as
well as families of processes (for multiple components).

Just like CTTool, our Vercors platform is using the CADP toolset [15] for
state-space generation, hierarchical minimisation, (on-the-fly) model-checking,
and equivalence checking (strong/weak bisimulation). The JDC property spec-
ifications will also be subject to the same abstractions, and will be translated
into regular µ-calculus formula to be fed into the model-checker. In the future,
we plan to use other state-of-the-art provers, and in particular apply so-called
“infinite system” provers to deal directly with certain types of parameterized
systems.

The upper right part of the figure is dedicated to code generation, that will
be detailed in section 1.4.2. The ADL files in XML syntax, the Java interface
declarations, and all the Java code that constitute the control part of a compo-
nent (the implementation of the service policies) will be generated. The method
declarations for the service methods are created too, they can be then filled-
in by the developper. This constitutes a runnable ProActive component or full
application.

1.4.2 Generation of Safe GCM/ProActive Code

Although the code generation is not implemented yet, we give in here its main
constructs. As an alternative to static analysis methods for proving that a user-
implemented component conforms to its JDC specification, we rely on the gen-
eration of an ADL model plus GCM/ProActive code-skeletons from the specifi-
cation. Then, we set rules stating what the user can do in the remaining code in
such a way that the generated code will be guaranteed to be correct. We base
our method on the following steps:

– the GCM ADL definition is automatically generated from JDC as it includes
the architecture, interface signatures and component cardinality;

– the skeleton for the primitive, mainly consisting of its control flow, is given by
the JDC’s black-box specification: every possible method call and data-usage
must appear in the black-box specification. In particular:
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• the service methods are obtained from the behaviour associated with
the same method name in the JDC. We rely on the strong functional
behaviour encapsulation of GCM for this matter;

• ProActive’s runActivity() method, i.e. the service policy of the ac-
tive object implementing the primitive is directly generated from JDC’s
serving policy;

– then, the programmer must implement the code that deals with data man-
agement details, but should not modify the control code, so that the code is
certified to comply with the specification.

1.4.3 Generation of Behavioural Models

Again, the generation of behavioural models from JDC specifications is not im-
plemented yet, but we state that JDC specfications are suitable for such. The
checking tools used in our verification platform [4] are based mainly on explicit-
state models, so we need to build models that abstract the concrete behaviour
of our components in a way that preserves our specifications. We plan to do
this in three steps. First, we shall transform the original JDC specification using
the mapping to simple types. Then we shall build pNets models as described in
previous work [12, 13]. Finally, for each formula to be checked, we will use finite
partitions as a domain abstraction for each parameter in the model, that will
give a finite model usable in a model-checker. In [4], we described a tool called
ADL2N for quasi-automatic behavioural model generation. In JDC a similar
technique applies, but with a better expressivity as JDC includes information
about control and data flow.

We only comment here the pNets construction. It involves two aspects: map-
ping (abstracting) user data types, i.e., mapping arbitrary Java classes into Sim-
ple Types that are the only parameter domains allowed in pNets as described in
Section 1.2.3; and building synchronisation objects corresponding to the various
architecture and communication primitives of JDC.

Building the behaviour model for a JDC component requires to: (1) turn
the pseudo code in each JDC method (the service policy and service methods)
into a pLTS (parameterized Labelled Transition System) (2) generate pLTSs for
specific primitives or library element of JDC, e.g. request queues, NF controllers,
etc; (3) generate synchronisation structures (pNets) for relating these pLTS,
depending on the types of bindings and interfaces used.

1.5 Analysis

The models obtained in the previous section allow us to generate both parame-
terized and finite abstractions of the system behaviour, either for a single com-
ponent, or for an arbitrary assembly. In principle, this allows for checking:

– simple “press-button” properties, like the absence of deadlocks, or the ab-
sence of certain types of events (predefined error events),
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– more complex temporal properties expressed as temporal logic formulas,
or in a formalism that can be translated into the temporal logic language
understood by the model-checker,

– conformance between the implementation of a component (computed from
the behaviour of its architecture) and its black-box specification, expressed
as an equivalence or a preorder relation (as in [6]).

In this technical report we only consider verification performed on the finite
abstraction of the model, and the verification is done by the Evaluator model-
checker (from the CADP toolset). Both the parameterized case (using “infinite-
state” engines), and the conformance checking are left for further work.

In the following pages, we give examples of verification of the CoCoME re-
quirement scenarios, that we have performed with the current version of CTTool,
and explain a number of results of this analysis.

1.5.1 System Verification

The JDC tool support itself being not yet available, we have conducted the
analysis activities in this section using directly the capabilities of CTTool: it
works by generating LOTOS code that implements a (synchronous) semantics
of UML component diagrams and state-machines (including data-types), and
passing this LOTOS code to the CADP verification toolset. CTTool itself in-
cludes a user interface that hides most of the verification engine complexity, and
provides a number of menus for controlling the CADP functions.

There are many ways of encoding formulas. Some of them are very powerful
as µ-calculus, but at the same time hardly usable by non-experts. So, having
software engineer’s expertise and JDC in mind, we propose to write formulas
using automata. Transitions contain predicates with logic quantifiers and states
can be marked as either acceptance or rejection. The automata may change to
any state whose transition predicates are satisfied. If a final state is unreachable,
the formula is false. Moreover, there are special predicates:

- ANY meaning that any label satisfies the predicate;

- NOT(i), (i AND j), (i OR j) meaning that any label but i given satisfies
the expression, both i and j must satisfy the expression and either i or j

may satisfy the expression respectively;

- and ANYOTHER meaning that all labels not satisfying other transitions from
the state satisfies the predicate.

Then, formulas are readable and easy to write, and have language constructs
compatible with both CTTool’s state-machines and JDC’s regular expressions.

Absence of Deadlocks There are basic formulas that can be proved, the most
common being the absence of deadlocks. In the case of our CTTool specification,
this ends-up being trivially false because of two reasons:
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- the specification of exceptions: in our specification, any time an exception
is raised, we just block the system. So we may want to search for deadlocks
that are not following an exception;

- the synchronous semantics of CTTool components: in CTTool, components
are mono-threaded, and communications are synchronous. As a result, the
system deadlocks due to race conditions over the EventBus. Concretely,
events are not atomic within the EventBus, so a controller may trigger an
event (and therefore block the EventBus) while the Application is running
an ongoing sale. At this moment, if-ever the Application needs to access any
of its controllers (through the EventBus), the system deadlocks.

To show this, we write a formula expressing that all deadlocks are the con-
sequence of an exception, and to model-check this formula. More precisely we
write the negation, i.e. that any transition is followed by some other transition
as long as an exception has not been raised.

NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)NOT(Exception)

ANYANYANYANYANYANYANYANYANYANYANYANYANYANYANYANYANY
truetruetruetruetruetruetruetruetruetruetruetruetruetruetruetruetrue

The answer we get when we evaluate the former formula is “false” (the for-
mula does not stand). As a diagnostic we receive a trace in which the Scanner-
Controller triggers a ProductBarCodeScanEvent, blocking the EventBus. Mean-
while, the application is trying to synchronise with the EventBus for querying
the price of the previously scanned product.

Note that these kind of scenarios would not be present in a real ProActive
application because of the asynchronous method calls which buffers requests in
the queues: we have more deadlocks in a synchronous implementation of the sys-
tem than those we would have with ProActive. Nevertheless, using the CTTool
specification we were able to prove some interesting scenarios, and to find some
errors (or underspecifications) within the reference CoCoME specification.

Main Sale Process This scenario relates to “Use Case 1”. To illustrate the
capabilities of our approach to verify more specific properties, we have checked
(still in the synchronous model) some of the usage scenarios listed in the Co-
CoME specification. Our first scenario is defined in CoCoME’s requirements as
a trace in UML sequence diagram. We successfully verified that this trace is fea-
sible in the state-space generated by CADP. An even more interesting scenario
can be encoded as a negation of the following: a sale starts; before it finishes,
valid products are scanned; the client pays with enough cash; the sale is not
registered and a new sale starts. CADP’s diagnostic strikes out that it is not
possible to start a new sale before booking the former one.
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Booking an Empty Sale This scenario relates to “Use Case 1”. Although it
may not be an error, it is strange that a system allows an empty sale to be booked.
This trace was found when searching for the shortest path (by using Breadth-
First Search algorithm) that books a sale. Alternatively, a software engineer may
want to explicitly verify if this scenario is feasible with the automaton below. A
sale is started; no products are scanned; the sale is booked.
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Successful Sale with Insufficient Money This scenario relates to “Use Case
1”. We found that it was possible to book a sale even if the client pays with
insufficient money. The problem is reflected by the fact that there is no way of
aborting a sale when paying with cash, and there is no verification whether the
money fulfils expenses. Note that this issue was verified running the CoCoME
reference implementation – which allowed to pay $0 – and going through the
UML specification – which has nothing relative to it. In fact, the insufficient
funds exception was only foreseen within a credit card payment. Nonetheless, in
general, once a sale is started, it is not possible to abort, so the system must
book the sale before proceding.

Note that for this scenario, the data abstraction plays an important role as
it plays a role in the control-flow of the application. The amount that the client
pays then is abstracted with two values: one with insufficient money and the
other with sufficient money.
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Safety of the Express Mode This scenario relates to “Use Case 2”. A non-
precised scenario was found. There is nothing within the CoCoME reference
specification that states when a CashDesk may switch from/to an express mode.
In fact, the system ends-up in an inconsistent state if an express mode signal is
triggered during an ongoing sale. This scenario can be found using the following
property:
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1.6 Summary

In this technical report we presented the Grid Component Model (GCM) and the
Java Distributed Component specification language (JDC) as a means to address
robust distributed component system design. Our approach aims at integrating
at the level of the specification language the architecture specification and its
implementation together with the black-box behaviour of the components in
order to generate safe code by construction.

We started by presenting the GCM and its reference implementation using
the ProActive library. Then, we have defined the JDC specification language as
the kernel of our framework. Then, we gave the full JDC specification of two of
the CoCoME components, the full specification being available in the annex. In
addition we gave an alternative method for building JDC specifications, using
UML 2.0 diagrams available in our CTTool software. From these specifications,
we created by hand a GCM/ProActive implementation showing how the control
code can be automatically generated from the JDC specification. From the same
specification, completed by abstraction functions, we have shown how to generate
models suitable for verification (model-checking or equivalence checking), in the
form of parameterized networks of synchronised transition systems.

Finally, the CTTool specification was used to check for safety traces of the
reference CoCoME specification scenarios. Because of our synchronous encoding,
the EventBus component ended-up being a source of deadlocks. As a result of
this verification activity, we found a number of interesting features, that we
interpreted as bugs or under-specifications in the CoCoME official definition.

Limitations There are number of features that are not considered in this ap-
proach: we do not consider any “performance” aspect of the specification (re-
sponse time or other quality of service measures); neither do we try to fully
specify the functional part of the code (data computation), as could be done in
some proof-assistant based approaches.

Other limitations come from the early state of some of our software platform:
our model generator is currently limited to the synchronous interpretation of the
component systems (only the synchronous controllers are generated), so the fea-
tures relying on asynchronous communication, and in particular the search for
functional deadlocks in Grid-based systems cannot be analysed. These develop-
ments are planned for the next version of the tool. Currently we have no direct
support for the JDC language itself, so we rely on the existing CTTool platform
to provide an alternative tool suite. We are working on an analysis platform with
direct support for JDC, in which the CTTool diagrams will only be an alterna-
tive syntax for the specification. The JDC development platform will include an
Eclipse plug-in, a Java code generation tool, a model generation tool, and a JDC
formula compiler. With them, we hope to answer the software engineer’s needs
when developping distributed components.
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9. Caromel, D., Delbé, C., di Costanzo, A., Leyton, M.: ProActive: an integrated
platform for programming and running applications on grids and P2P systems.
Computational Methods in Science and Technology 12(1) (2006) 69–77

10. Caromel, D., Henrio, L., Serpette, B.: Asynchronous and deterministic objects.
In: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, ACM Press (2004) 123–134

11. Caromel, D., Henrio, L.: A Theory of Distributed Object. Springer-Verlag (2005)
12. Barros, T., Henrio, L., Madelaine, E.: Behavioural models for hierarchical compo-

nents. In Godefroid, P., ed.: Model Checking Software, 12th Int. SPIN Workshop,
San Francisco, CA, USA, LNCS 3639, Springer (2005)

13. Barros, T., Henrio, L., Madelaine, E.: Verification of distributed hierarchical com-
ponents. In: International Workshop on Formal Aspects of Component Software
(FACS’05), Macao, ENTCS (2005)

14. Apvrille, L.: Turtle documentation, http://labsoc.comelec.enst.fr/turtle/help/
(2005)

15. Garavel, H., Lang, F., Mateescu, R.: An overview of CADP 2001. European
Association for Software Science and Technology (EASST) Newsletter 4 (2002)
13–24

30



1.8 Annex

In this annex we include the full CoCoME specification in JDC language.

1.8.1 Interface Signatures

2 public interface BankIf {

Transaction validateCard(CreditCardScanned creditCard, PIN pin);

4 Info debitCard(Transaction transaction);

}

6

public interface ApplicationEventHandlerIf {

8 void saleStarted();

void saleFinished();

10 void cashAmountEntered(CashAmount moneyAmountEntered);

void cashBoxClosed();

12 void creditCardScanned(CreditCardScanned creditCardScanned);

void pinEntered(PIN pin);

14 void paymentMode(PaymentMode paymentMode);

}

16

public interface CardReaderControlIf extends ExpressModeIf{

18

}

20

public interface CardReaderEventIf {

22 void creditCardScanned(CreditCardScanned creditCardScanned);

void pinEntered(PIN pin);

24 }

26 public interface CashBoxControlIf {

void changeAmountCalculated (CashAmount changeAmount);

28 }

30 public interface CashBoxEventIf {

void saleStarted();

32 void saleFinished();

void cashAmountEntered(CashAmount moneyAmountEntered);

34 void cashBoxClosed();

void paymentMode(PaymentMode paymentMode);

36 }

38 public interface CashDeskGUIIf {

void runningTotalChanged(CashAmount runningTotal);

40 void cashAmountEntered(CashAmount cashAmount);

void changeAmountCalculated(CashAmount changeAmount);

42 void invalidCreditCard();

void creditCardScanFailed();

44 void productBarcodeNotValid();

void saleFinished();

46 void saleStarted();

}

48

public interface EventBusIf extends LightDisplayControlIf, CardReaderControlIf, CashDeskGUIIf, CashBoxControlIf, PrinterIf {

50

}

52

public interface ExpressModeIf {

54 void expressModeEnabled();

void expressModeDisabled();

56 }

58 public interface LightDisplayControlIf extends ExpressModeIf{

60 }

62 public interface PrinterIf {

void runningTotalChanged(CashAmount runningTotal);

64 void cashAmountEntered(CashAmount cashAmount);

void changeAmountCalculated(CashAmount changeAmount);

66 void saleStarted();

void saleFinished();

68 void cashBoxClosed();

}

70

public interface ScannerEventIf {

72 void productBarcodeScanned(ProductBarcode barcode);

}

74

public interface CashDeskConnectorIf {

76 Product getProduct(ProductBarcode productBarCode) ;// throws InvalidBarcodeException;

}

78
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public interface SaleRegisteredIf {

80 void bookSale(Sale sale);

}

1.8.2 System Architecture

architecture System(int numOfBanks, int numOfCashDesks) {

2 contents

component Bank(numOfCashDesks) bank;

4 component TradingSystem(numOfBanks, numOfCashDesks) tradingSystem;

6 bindings

for (int i: numOfBanks) {

8 bind(tradingSystem.bankIf[i], bank.bankIf);

}

10

}

1.8.3 Trading System Black-Box

// from outside, the TradingSystem can be seen as multiple clients

2 // that send requests to the bank.

// the only constraint is that is always validates the creditcard

4 // before commiting(debit) the sale

6 component TradingSystem(int numOfBanks, int numOfCashDesks) {

interfaces

8 client interface BankIf bankIf[numOfBanks];

10 services

service(int i: numOfCashDesks) {

12 policy {

run()*

14 }

16 void run () {

// get some CreditCard

18 CreditCardScanned creditCard = __ANY(CreditCardScanned);

20 // try to validate the credit card

try {

22 Transaction transaction = bankIf.validateCard(creditCard);

transaction.waitForValue();

24 Info info = bankIf.debitCard(transaction);

info.waitForValue();

26 } catch (InvalidCreditCardException e) {

// do nothing

28 }

}

30 }
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1.8.4 Bank Black-Box

component Bank(int numOfThreads) {

2 interfaces

server interface BankIf bankIf;

4

services

6 // the number of threads is not used within the component

// but is needed so that the designer knows that it must accept

8 // requests from multiple clients

service(int i: numOfThreads) {

10 policy {

serveOldest(bankIf)*

12 }

14 Transaction bankIf.validateCard(CreditCardScanned creditCard, PIN pin) {

if (validate(creditCard, pin)) {

16 throw new InvalidCreditCardException();

}

18 // creditCard and pin are ok

return __ANY(Transaction);

20 }

22 Info bankIf.debitCard(Transaction transaction, CashAmount total) {

transaction.waitForValue();

24 total.waitForValue();

26 if (__ANY(bool) {

// if there are not enough funds

28 throw new InvalidCreditCardException();

}

30 else {

// successfuly debited from client account

32 return __ANY(Info);

}

34 }

36 bool validate(CreditCardScanned creditCard, PIN pin) {

try {

38 creditCard.waitForValue();

pin.waitForValue();

40 } catch (Exception e) {

// if either creditcard or pin do not match

42 return false;

}

44 return true;

}

46 }

}

1.8.5 Trading System Architecture
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architecture TradingSystem(int numOfBanks, int numOfCashDesks) {

2 contents

// the inventory is able to deal with all cashDesks at the same time

4 component Inventory(numOfCashDesks) inventory;

component CashDeskLine(numOfBanks, numOfCashDesks) cashDeskLine;

6

bindings

8 bind(cashDeskLine.saleRegisteredIf, inventory.saleRegisteredIf);

bind(cashDeskLine.cashDeskConnectorIf, inventory.cashDeskConnectorIf);

10

for (int i: numOfBanks) {

12 bind(cashDeskLine.banksIf[i], this.banksIf[i]);

}

14 }

1.8.6 CashDeskLine Black-Box

// The CashDeskLine seen as a black-box is just a multi-threaded

2 // component that can either:

// - query the inventory for a product given its barcode;

4 // - query a bank (a specific one based on the credit card data) for a

// credit card validity, and afterwards debit the sale;

6 // - commit the sale.

8 component CashDeskLine(int numOfBanks, int numOfCashDesks) {

interfaces

10 client interface BankIf banksIf[numOfBanks];

client interface SaleRegisteredIf saleRegisteredIf;

12 client interface CashDeskConnectorIf cashDeskConnectorIf;

14 services

service(int i: numOfCashDesks) {

16 policy {

( getProduct()* ;

18 (payWithCreditCard() | bookSale())

)*

20 }

22 void payWithCreditCard() {

// get some CreditCard

24 CreditCardScanned creditCard = __ANY(CreditCardScanned);

26 // try to validate the credit card

try {

28 int bankId = creditCard.getBankId();

Transaction transaction = bankIf[bankId].validateCard(creditCard);

30 transaction.waitForValue();

Info info = bankIf[bankId].debitCard(transaction);

32 info.waitForValue();

bookSale();

34 } catch (InvalidCreditCardException e) {

// do nothing

36 }

}

38

void bookSale() {

40 saleRegisteredIf.bookSale(__ANY(Sale));

}

42

void getProduct() {

44 try {

Product product = cashDeskConnectorIf.getProduct(__ANY(ProductBarcode));

46 product.waitForValue();

} catch (InvalidBarCodeException e) {

48 // some internal action dealing with the exception

break;

50 }

}

52 }

}
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1.8.7 Inventory Black-Box

// from outside, the inventory just registers sales

2 // and maps productBarcodes to products.

4 component Inventory(int numOfThreads) {

interfaces

6 server interface CashConnectorIf cashConnectorIf;

server interface SaleRegisteredIf saleRegisteredIf;

8

services

10 service(int i: numOfThreads) {

policy {

12 serveOldest(cashConnectorIf,saleRegisteredIf)*

}

14 Product cashConnectorIf.getProduct(ProductBarcode barcode) {

barcode.waitForValue();

16 // check if the barcode is valid or if item is in the database

if (__ANY(bool)) {

18 throw new InvalidBarcodeException();

}

20 return __ANY(Product);

}

22

void saleRegisteredIf.bookSale(Sale sale) {

24 sale.waitForValue();

}

26 }

}

1.8.8 CashDeskLine Architecture

architecture CashDeskLine(int numOfBanks, int numOfCashDesks) {

2 contents
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component CashDesk cashDesk[numOfCashDesks];

4 component EventBus(numOfCashDesks) eventBus;

component Coordinator(numOfCashDesks) coordinator;

6

bindings

8 // bind: CashDesk -> Outside

for (int i: numOfCashDesks) {

10 // i is used to address a specific cashDesk

12 bind(cashDesk[i].cashDeskConnectorIf, this.cashDeskConnectorIf);

for (int j: numOfBanks) {

14 // j is used to address a specific bankIf

bind(cashDesk[i].bankIf[j], this.bankIf[j]);

16 }

}

18

// bind: CashDesk <-> EventBus

20 for (int i: numOfCashDesks) {

// i is used to address a specific cashDesk

22

bind(cashDesk[i].eventBusIf, eventBus.eventBusIf[i]);

24 bind(cashDesk[i].saleRegisteredIf, eventBus.saleRegisteredIf[i]);

bind(cashDesk[i].cashReaderEventIf, eventBus.cashReaderEventIf[i]);

26 bind(cashDesk[i].cashBoxEventIf, eventBus.cashBoxEventIf[i]);

bind(cashDesk[i].scannerIf, eventBus.scannerIf);

28

30 bind(eventBus.applicationEventHandlerIf[i], cashDesk[i].applicationEventHandlerIf);

bind(eventBus.cashReaderControlIf[i], cashDesk[i].cashReaderControlIf);

32 bind(eventBus.cashDeskGUIControlIf[i], cashDesk[i].cashDeskGUIControlIf);

bind(eventBus.cashBoxControlIf[i], cashDesk[i].cashBoxControlIf);

34 bind(eventBus.lightDisplayControlIf[i], cashDesk[i].lightDisplayControlIf);

bind(eventBus.printerIf[i], cashDesk[i].printerIf);

36 }

38 // bind: EventBus <-> Coordinator (except the Multicast towards the inventory)

for (int i: numOfCashDesks) {

40 // i is used to address a specific cashDesk

42 // eventBus.saleRegisteredEventIf becomes a client multicast interface

multicast(eventBus.saleRegisteredEventIf, BROADCAST) {

44 bind(eventBus.saleRegisteredEventIf, coordinator.saleRegisteredEventIf);

bind(eventBus.saleRegisteredEventIf, this.saleRegisteredEventIf);

46 }

bind(coordinator.expressModeControlIf[i], eventBus.expressModeControlIf[i]);

48 }

}

1.8.9 CashDesk Black-Box

// this component is incomplete on purpose.

2 // each of the controllers are completely independent from each other at this

// point of view, so the specification of each service would be only a copy/paste

4 // of each related component.

6 component CashDesk(int numOfBanks) {

interfaces

8 server interface CardReaderControlIf cardReaderControlIf;

server interface ApplicationEventHandlerIf applicationEventHandlerIf;

10 client interface BankIf banksIf[numOfBanks];

// ... other interfaces

12

services

14 service { // CardReaderController

policy {

16 ((emit() | serveOldest(cardReaderControlIf.expressModeDisabled))*;

serveOldest(cardReaderControlIf.expressModeEnabled);

18 serveOldest(cardReaderControlIf.expressModeDisabled))*

}

20 void emit() {

if (__ANY(bool)) // non-deterministic choice

22 cardReaderEventIf.creditCardScanned(__ANY(CreditCard));

}

24 // ... cardReaderControlIf.expressModeEnabled

// ... cardReaderControlIf.expressModeDisabled

26 }

service { // CashDeskApplication

28 locals {

CashState cashState;

30 // ... other local variables

}

32 policy {

init(); expressModeDisabled();

34 serveOldest(applicationEventHandlerIf) *

}

36 void saleStarted() throws NotIdleException {
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switch (cashState.getState()) {

38 case cashState.IDLE:

cashState = cashState.STARTED;

40 break;

case cashState.STARTED:

42 case cashState.PAYING:

throw new NotIdleException();

44 break;

}

46 }

// ... other methods

48 }

}

1.8.10 EventBus Black-Box

// the EventBus is responsible of forwarding messages comming from

2 // cashDesks’ peripherals to the proper cashDesk.

4 // It also synchronises the coordinator with the cashDesks.

6 // Additionally, it does a multicast of messages when applies, for example,

// when a message comming from the application must go to the printer and GUI,

8 // it is the eventBus who does it.

10 component EventBus(int numOfCashDesks) {

interfaces

12 server interface SaleRegisteredIf saleRegisteredIf;

server interface CardReaderEventIf[numOfCashDesks] cardReaderEventIf;

14 server interface CashBoxEventIf[numOfCashDesks] cashBoxEventIf;

server interface ScannerEventIf[numOfCashDesks] scannerEventIf;

16 server interface EventBusIf[numOfCashDesks] eventBusIf;

server interface ExpressModeIf[numOfCashDesks] expressModeControlIf;

18

client interface LightDisplayControlIf[numOfCashDesks] lightDisplayControlIf;

20 client interface CardReaderControlIf[numOfCashDesks] cardReaderControlIf;

client interface CashDeskGUIIf[numOfCashDesks] cashDeskGUIIf;

22 client interface CashBoxControlIf[numOfCashDesks] cashBoxControlIf;

client interface PrinterIf[numOfCashDesks] printerIf;

24 client interface SaleRegisteredIf saleRegisteredEventIf;

client interface ApplicationEventHandlerIf[numOfCashDesks] applicationEventHandlerIf;

26

services

28 service(int i: numOfCashDesks) { // CashDeskChannel

policy {

30 serveOldest(cardReaderEventIf[i],cashBoxEventIf[i],scannerEventIf[i],eventBusIf[i],expressModeControlIf[i])*

}

32

void cardReaderEventIf[i].creditCardScanned(CreditCardScanned creditCardScanned) {

34 applicationEventHandlerIf[i].creditCardScanned(creditCardScanned);

}

36

void cardReaderEventIf[i].pinEntered(PIN pin) {

38 applicationEventHandlerIf[i].pinEntered(pin);

}

40

void cashBoxEventIf[i].saleStarted() {

42 printerIf[i].saleStarted();

applicationEventHandlerIf[i].saleStarted();

44 cashDeskGUIIf[i].saleStarted();

}

46

void cashBoxEventIf[i].saleFinished() {

48 printerIf[i].saleFinished();

applicationEventHandlerIf[i].saleFinished();

50 cashDeskGUIIf[i].saleFinished();

}

52

void cashBoxEventIf[i].cashAmountEntered(CashAmount moneyAmountEntered) {

54 printerIf[i].cashAmountEntered(moneyAmountEntered);

applicationEventHandlerIf[i].cashAmountEntered(moneyAmountEntered);

56 cashDeskGUIIf[i].cashAmountEntered(moneyAmountEntered);

}

58

void cashBoxEventIf[i].cashBoxClosed() {

60 printerIf[i].cashBoxClosed();

applicationEventHandlerIf[i].cashBoxClosed();

62 }

64 void cashBoxEventIf[i].paymentMode(PaymentMode paymentMode) {

applicationEventHandlerIf[i].paymentMode(paymentMode);

66 }

68 void scannerEventIf[i].productBarcodeScanned(ProductBarcode barcode) {

applicationEventHandlerIf[i].productBarcodeScanned(barcode);

70 }

72 void eventBusIf[i].changeAmountCalculated(CashAmount changeAmount) {
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printerIf[i].changeAmountCalculated(changeAmount);

74 cashBoxControlIf[i].changeAmountCalculated(changeAmount);

cashDeskGUIIf[i].changeAmountCalculated(changeAmount);

76 }

78 void eventBusIf[i].expressModeEnabled() {

lightDisplayControlIf[i].expressModeEnabled();

80 cardReaderControlIf[i].expressModeEnabled();

cashDeskGUIIf[i].expressModeEnabled();

82 }

84 void eventBusIf[i].expressModeDisabled() {

lightDisplayControlIf[i].expressModeDisabled();

86 cardReaderControlIf[i].expressModeDisabled();

cashDeskGUIIf[i].expressModeDisabled();

88 }

90 void eventBusIf.runningTotalChanged(Product product, CashAmount runningTotal) {

printerIf.runningTotalChanged(product, runningTotal);

92 cashDeskGUIIf.runningTotalChanged(product, runningTotal);

}

94

void eventBusIf[i].invalidCreditCard() {

96 cashDeskGUIIf[i].invalidCreditCard();

}

98

void eventBusIf[i].creditCardScanFailed() {

100 cashDeskGUIIf[i].creditCardScanFailed();

}

102

void eventBusIf[i].productBarcodeNotValid() {

104 cashDeskGUIIf[i].productBarcodeNotValid();

}

106

void expressModeControlIf[i].expressModeEnabled() {

108 applicationEventHandlerIf[i].expressModeEnabled();

}

110

void expressModeControlIf[i].expressModeDisabled() {

112 applicationEventHandlerIf[i].expressModeDisabled();

}

114 }

116 service { // CommonBus

policy {

118 serveOldest(saleRegisteredIf)*

}

120

void saleRegisteredIf.bookSale(Sale sale) {

122 saleRegisteredEventIf.bookSale(sale);

}

124 }

}

1.8.11 Coordinator Black-Box

// The Coordinator is in charge of deciding if a cashDesk should be

2 // either express or not.

// This is done with an internal (unknown) criteria, so from outside

4 // we only see that it may decide that some cashDesk should be express, while

// others are not.

6 // Each time a cashDesk books a sale, the coordinator receives a message

// with the sale information. This is the input to the unknown criteia

8

component Coordinator(int numOfCashDesks) {

10 interfaces

server interface SaleRegisteredIf saleRegisteredEventIf;

12 client interface ExpressModeIf expressModeControlIf[numOfCashDesks];
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14 services

service {

16 policy {

serveOldest(saleRegisteredEventIf)*

18 }

20 void saleRegisteredEventIf.bookSale(Sale sale) {

// read values to know sale type

22 sale.waitForValue();

24 // check if a CashDesk should change its status

if (__ANY(bool)) {

26 // send to a cashDesk the signal to change its status

expressModeControlIf[ANY].expressModeEnabled();

28 }

30 // check if a CashDesk should change its status

if (__ANY(bool)) {

32 // send to a cashDesk the signal to change its status

expressModeControlIf[ANY].expressModeDisabled();

34 }

}

36 }

}

1.8.12 CashDesk Architecture

architecture CashDesk(int numOfBanks) {

2 contents

component CashDeskApplication(numOfBanks) application;

4 component CashReaderController cashReader;

component CashDeskGUI cashDeskGUI;

6 component cashBoxController cashBoxController;

component LightDisplayController lightDisplayController;

8 component PrinterController printerController;

component ScannerController scannerController;

10

bindings

12 // application

bind(this.applicationEventHandlerIf, application.applicationEventHandlerIf);

14 bind(application.cashDeskConnectorIf, this.cashDeskConnectorIf);

bind(application.eventBusIf, this.eventBusIf);

16 bind(application.saleRegisteredIf, this.saleRegisteredIf);

18 // bind all bank interfaces

for (int i: numOfBanks) {

20 bind(application.banksIf[i], this.banksIf[i]);

}

22

// cashReader

24 bind(this.cashReaderControlIf, cashReader.controlIf);

bind(cashReader.eventIf, this.eventIf);

26

// cashDeskGUI

28 bind(this.cashDeskGUIControlIf, cashDeskGUI.controlIf);

30 // cashBoxController

bind(this.cashBoxControllerControlIf, cashBoxController.controlIf);

32 bind(cashBoxController.eventIf, this.cashBoxControllerEventIf);

34 // lightDisplayController

bind(this.lightDisplayControllerControlIf, lightDisplayController.controlIf);

36

// printerController

38 bind(this.printerIf, printerController.printerIf);

40 // scannerController

bind(scannerController.scannerIf, this.scannerIf);

42 }
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1.8.13 CashDeskApplication Black-Box

// The Application can be seen as the core of the CashDeskLine.

2 // A summary of its behaviour is as follows:

// - it knows how to handle each of the peripherals, i.e., hardware controllers;

4 // - has two states: expressMode and normal;

// - each time a product is scanned, queries the inventory for the product price;

6 // - w.r.t. payment, allows for cash and creditCard payment. In the case of

// a creditCard, using the creditCard information queries a certain bank (addresses a

8 // certain bank within numOfBanks).

// - finally, commits the sale when applies.

10

component CashDeskApplication(int numOfBanks) {

12 interfaces

server interface ApplicationEventHandlerIf applicationEventHandlerIf;

14 client interface CashDeskConnectorIf cashDeskConnectorIf;

client interface EventBusIf eventBusIf;

16 client interface SaleRegisteredIf saleRegisteredIf;

18 // collection client interface

client interface BankIf banksIf[numOfBanks];

20

services

22 service {

locals {

24 // simple types

bool expressMode;

26

// these types are abstracted in their definition

28 CashState cashState;

PaymentMode paymentMode;

30 CashAmount runningTotal;

32 // inline abstractions

34 // the only control information is related to the card

// validity and the bank for which it stands for

36 CreditCardScanned creditInfo abstracted as {

int getBankId() throws InvalidCreditCardException() {
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38 // simulate that a credit card may be invalid

if (__ANY(bool)) {

40 throw new InvalidCreditCardException();

}

42 return __ANY(int);

}

44 }

46 // the product list is abstracted as follows:

// we count the number of items. If it ever exceeds MAX_ITEMS_EXPRESSMODE

48 // we know that if-ever in the expressMode, it is out-of-bounds.

// So, the product list is actually abstracted to an interval of integers

50 // encoding one value for each item it has up to MAX_ITEMS_EXPRESSMODE,

// and an additional one encoding that it is out-of-bounds.

52 List<Product> products abstracted as {

int size abstracted as interval(0,MAX_ITEMS_EXPRESSMODE+1);

54 void add(Product product) {

// if the number of products has not exceeded the maximum allowed

56 // by an express machine we increment its value

if (size <= MAX_ITEMS_EXPRESSMODE)

58 size++;

}

60 int size() {

return size;

62 }

}

64 }

66 // the policy is FIFO after some initialisation has been done

policy {

68 init();

serveOldest(applicationEventHandlerIf)*;

70 }

72 // methods

void init() {

74 cashState = cashState.IDLE;

paymentMode = paymentMode.INVALID;

76 creditInfo = creditInfo.INVALID;

products = new List<Product>();

78 runningTotal = new CashAmount();

expressMode = false;

80 }

82 void applicationEventHandlerIf.saleStarted() throws NotIdleException {

switch (cashState) {

84 case cashState.IDLE:

cashState = cashState.STARTED;

86 break;

case cashState.STARTED:

88 case cashState.PAYING:

throw new NotIdleException();

90 break;

}

92 }

94 // with the barcode, queries the inventory to get which product it is

void applicationEventHandlerIf.productBarcodeScanned (ProductBarcode barcode) throws ExceededNumberOfProducts {

96 switch (cashState.getState()) {

case cashState.IDLE:

98 case cashState.PAYING:

// ignore signal

100 break;

case cashState.STARTED:

102 try {

Product product = cashDeskConnectorIf.getProduct(barcode);

104 products.add(product);

if (expressMode && products.size() > MAX_ITEMS_EXPRESSMODE) {

106 // what to do with the exception

// this is not specified within the CoCoME reference specification

108 throw new ExceededNumberOfProducts();

}

110 runningTotal.add(product.getProductPrice());

eventBusIf.runningTotalChanged(product, runningTotal);

112 } catch (InvalidBarCodeException e) {

eventBusIf.productBarcodeNotValid();

114 break;

}

116 break;

}

118 }

120 void applicationEventHandlerIf.saleFinished() throw SaleNotFinishedException {

switch (cashState.getState()) {

122 case cashState.IDLE:

case cashState.PAYING:

124 throw new SaleNotFinishedException();

break;

126 case cashState.STARTED:

cashState = cashState.PAYING;
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128 break;

}

130 }

132 // based in the money given by the client and the running total,

// decides how much is the change

134 private CashAmount computeChangeAmount(CashAmount moneyAmount) {

// this method must be rewritten in the implementation

136 moneyAmount.waitForValue();

runningTotal.wailForValue();

138 return new __ANY(CashAmount);

}

140

// the client has given a certain amount of money and the system proceeds

142 // with the sale by computing the change

void applicationEventHandlerIf.cashAmountEntered(CashAmount moneyAmount) throws WrongPaymentModeException,

NotPayingException {

144 if (!cashState.isPaying()) {

throw new NotPayingException();

146 }

if (!paymentMode.isCash()) {

148 throw new WrongPaymentModeException();

}

150 CashAmount changeAmount = computeChangeAmount(moneyAmount);

eventBusIf.changeAmountCalculated(changeAmount);

152 }

154 // once the cashBox is closed, the sale is finished

void applicationEventHandlerIf.cashBoxClosed() throw WrongPaymentModeException, NotPayingException {

156 if (!cashState.isPaying()) {

throw new NotPayingException();

158 }

if (!paymentMode.isCash()) {

160 throw WrongPaymentModeException();

}

162 Sale sale = new Sale(products, runningTotal, CASH);

saleRegisteredIf.bookSale(sale);

164 init();

}

166

// a credit card has been scanned

168 void applicationEventHandlerIf.creditCardScanned(CreditCardScanned creditCardScanned) throw

NotAcceptingCreditCardException, WrongPaymentModeException {

switch (expressMode) {

170 case true:

throw NotAcceptingCreditCardException();

172 break;

case false:

174 if (!paymentMode.isCreditCard()) {

throw WrongPaymentModeException();

176 }

if (!cashState.isPaying()) {

178 break; // ignore signal

}

180 this.creditInfo = creditCardScanned;

break;

182 }

}

184

// a PIN has been entered. If expected (after scanning a scanner and in

186 // payment with creditCard), this triggers the end of the sale

void applicationEventHandlerIf.pinEntered(PIN pin) {

188 try {

int bankId = creditInfo.getBankId();

190 // implicit bankId.waitForValue

int transactionId = bankIf[bankId].validateCard(creditInfo, pin);

192 // implicit transactionId.waitForValue

Info info = bankIf[bankId].debitCard(transactionId, runningTotal);

194 Sale sale = new Sale(products, runningTotal, CREDITCARD);

saleRegisteredIf.bookSale(sale);

196 init();

// implicit info.waitForValue() before leaving try

198 } catch (InvalidCreditCardException e) {

eventBusIf.invalidCreditCard();

200 }

}

202

// change to express mode

204 void applicationEventHandlerIf.expressModeEnabled() {

expressMode = true;

206 eventBusIf.expressModeEnabled();

}

208

// change to normal mode

210 void applicationEventHandlerIf.expressModeDisabled() {

expressMode = false;

212 eventBusIf.expressModeDisabled();

}

214

// the payment mode has been chosen
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216 void applicationEventHandlerIf.paymentMode(PaymentMode paymentMode) throws WrongPaymentModeException {

// if-ever in express mode, the client may not pay with creditCard

218 if (expressMode == true && paymentMode.isCreditCard()) {

throw WrongPaymentModeException();

220 }

this.paymentMode = paymentMode;

222 }

}

224 }

1.8.14 CardReaderController Black-Box

// the CardReader, when enabled (not in expressMode), sends events with credit card numbers.

2 // when in expressMode, it does nothing.

4 // the behaviour is in fact coded within the service policy, but could have been done as well

// with state variables

6

component CardReaderController {

8 interfaces

server interface CardReaderControlIf controlIf;

10 client interface CardReaderEventIf eventIf;

12 services

service {

14 policy {

((emit() | serveOldest(controlIf.expressModeDisabled))*;

16 serveOldest(controlIf.expressModeEnabled)+;

serveOldest(controlIf.expressModeDisabled))*

18 }

void emit() {

20 if (__ANY(bool)) // non-deterministic choice {

cardReaderEventIf.creditCardScanned(__ANY(CreditCard));

22 cardReaderEventIf.pinEntered(__ANY(PIN));

}

24 }

// service methods

26 void controlIf.expressModeEnabled() {

}

28

void controlIf.expressModeDisabled() {

30 }

}

32 }
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1.8.15 CashBoxController Black-Box

// the CashBox

2 // starts a new sale, then finishes the sale

// at that moment, it decides whether the client pays with cash or creditcard

4

component CashBoxController {

6 interfaces

server interface CashBoxControlIf controlIf;

8 client interface CashBoxEventIf eventIf;

10 services

service {

12 policy {

( eventIf.saleStarted(); eventIf.saleFinished();

14 ( cashMode(); cashAmount(); serveOldest(controlIf.changeAmountCalculated); eventIf.cashBoxClosed() )

|

16 ( creditCardMode() )

)*

18 }

20 void cashMode() {

eventIf.paymentMode(new PaymentMode(CASH));

22 }

24 void creditCardMode() {

eventIf.paymentMode(new PaymentMode(CREDIT));

26 }

28 void cashAmount() {

eventIf.cashAmount(__ANY(CashAmount));

30 }

32 void controlIf.changeAmountCalculated(CashAmount changeAmount) {

changeAmount.waitForValue();

34 }

36 }

}
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1.8.16 CashDeskGUI Black-Box

// GUI is dummy, i.e., it is stateless and always accepts messages.

2 // there is no protocol verification

// if an argument is received, it will read its value

4 component CashDeskGUI {

interfaces

6 server interface CashDeskGUIControlIf controlIf;

8 services

service {

10 policy {

serveOldest(controlIf)*

12 }

14 void controlIf.runningTotalChanged(Product product, CashAmount runningTotal) {

product.waitForValue();

16 runningTotal.waitForValue();

}

18

void controlIf.cashAmountEntered(CashAmount cashAmount) {

20 cashAmount.waitForValue();

}

22

void controlIf.changeAmountCalculated(CashAmount changeAmount) {

24 changeAmount.waitForValue();

}

26

void controlIf.invalidCreditCard() {

28 // show message on screen

}

30

void controlIf.creditCardScanFailed() {

32 // show message on screen

}

34

void controlIf.productBarcodeNotValid() {

36 // show message on screen

}

38

void controlIf.saleFinished() {

40 // show message on screen

}

42

void controlIf.saleStarted() {

44 // show message on screen

}

46

void controlIf.expressModeEnabled() {

48 // show message on screen

}

50

void controlIf.expressModeEnabled() {

52 // show message on screen

}

54 }

}

45



1.8.17 LightDisplayController Black-Box

// The LightDisplayController only triggers a light on/off

2 // but this is done at a hardware level, so as far as this spec is

// concerned, it does nothing but to serve request

4

component LightDisplayController {

6 interfaces

server interface LightDisplayControlIf controlIf;

8

services

10 service {

policy {

12 serveOldest(controlIf)*

}

14

// service methods

16 void controlIf.expressModeEnabled() {

// nothing to do...

18 }

20 void controlIf.expressModeDisabled() {

// nothing to do...

22 }

}

24 }

1.8.18 PrinterController Black-Box

// The PrinterController prints the messages coming from the Application.

2 // It sends these to the printer (hardware), but as far as this specification

// is concerned, it acts as a consumer of requests: serves requests and reads

4 // any values that might be sent.

6 component PrinterController {

interfaces

8 server interface PrinterIf printerIf;

10 services

service {

12 policy {

serveOldest(printerIf)*

14 }

16 // service methods

void printerIf.runningTotalChanged(Product product, CashAmount runningTotal) {

18 product.waitForValue();

runningTotal.waitForValue();

20 }

22 void printerIf.cashAmountEntered(CashAmount cashAmount) {
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cashAmount.waitForValue();

24 }

26 void printerIf.changeAmountCalculated(CashAmount changeAmount) {

changeAmount.waitForValue();

28 }

30 void printerIf.saleStarted() {

// do nothing

32 }

34 void printerIf.saleFinished() {

// do nothing

36 }

38 void printerIf.cashBoxClosed() {

// do nothing

40 }

}

42 }

1.8.19 ScannerController Black-Box

// the scanner is always generating events

2 component ScannerController {

interfaces

4 client interface ScannerEventIf scannerIf;

6 services

service {

8 policy {

// no need to serve anything. There are no serving interfaces

10 start()

}

12

void start {

14 while(true) {

// note that it may generate any product, including an invalid one

16 scannerIf.productBarcodeScanned(__ANY(ProductBarcode));

}

18 }

}

20 }
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1.8.20 EventBus Architecture

architecture EventBus(int numOfCashDesks) {

2 contents

component CashDeskChannel cashDeskChannel[numOfCashDesks];

4 component CommonBus commonBus;

6 bindings

for (int i: numOfCashDesks) {

8 bind(this.saleRegisteredIf, commonBus.saleRegisteredIf);

bind(this.cardReaderEventIf[i], cashDeskChannel[i].cardReaderEventIf);

10 bind(this.cashBoxEventIf[i], cashDeskChannel[i].cashBoxEventIf);

bind(this.scannerEventIf[i], cashDeskChannel[i].scannerEventIf);

12 bind(this.eventBusIf[i], cashDeskChannel[i].eventBusIf);

bind(this.expressModeControlIf[i], cashDeskChannel[i].expressModeControlIf[i]);

14

bind(cashDeskChannel[i].lightDisplayControlIf, this.lightDisplayControlIf[i]);

16 bind(cashDeskChannel[i].cardReaderControlIf, this.cardReaderControlIf[i]);

bind(cashDeskChannel[i].cashDeskGUIIf, this.cashDeskGUIIf[i]);

18 bind(cashDeskChannel[i].cashBoxControlIf, this.cashBoxControlIf[i]);

bind(cashDeskChannel[i].printerIf, this.printerIf[i]);

20 bind(cashDeskChannel[i].applicationEventHandlerIf, this.applicationEventHandlerIf[i]);

}

22 }
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1.8.21 CashDeskChannel Black-Box

// the CashDeskChannel is responsible of forwarding messages comming from

2 // cashDesk’s peripherals back to the proper interface in the cashDesk.

4 // It also synchronises the coordinator with the cashDesk.

6 // Additionally, it does a multicast of messages when applies, for example,

// when a message comming from the application must go to the printer and GUI,

8 // it is the eventBus who does it.

10 component CashDeskChannel {

interfaces

12 server interface CardReaderEventIf cardReaderEventIf;

server interface CashBoxEventIf cashBoxEventIf;

14 server interface ScannerEventIf scannerEventIf;

server interface EventBusIf eventBusIf;

16 server interface ExpressModeIf expressModeControlIf;

18 client interface LightDisplayControlIf lightDisplayControlIf;

client interface CardReaderControlIf cardReaderControlIf;

20 client interface CashDeskGUIIf cashDeskGUIIf;

client interface CashBoxControlIf cashBoxControlIf;

22 client interface PrinterIf printerIf;

client interface ApplicationEventHandlerIf applicationEventHandlerIf;

24

services

26 service {

policy {

28 serveOldest(cardReaderEventIf,cashBoxEventIf,scannerEventIf,eventBusIf,expressModeControlIf)*

}

30

void cardReaderEventIf.creditCardScanned(CreditCardScanned creditCardScanned) {

32 applicationEventHandlerIf.creditCardScanned(creditCardScanned);

}

34

void cardReaderEventIf.pinEntered(PIN pin) {

36 applicationEventHandlerIf.pinEntered(pin);

}

38

void cashBoxEventIf.saleStarted() {

40 printerIf.saleStarted();

applicationEventHandlerIf.saleStarted();

42 cashDeskGUIIf.saleStarted();

}

44

void cashBoxEventIf.saleFinished() {

46 printerIf.saleFinished();

applicationEventHandlerIf.saleFinished();

48 cashDeskGUIIf.saleFinished();

}

50

void cashBoxEventIf.cashAmountEntered(CashAmount moneyAmountEntered) {

52 printerIf.cashAmountEntered(moneyAmountEntered);

applicationEventHandlerIf.cashAmountEntered(moneyAmountEntered);

54 cashDeskGUIIf.cashAmountEntered(moneyAmountEntered);

}

56

void cashBoxEventIf.cashBoxClosed() {

58 printerIf.cashBoxClosed();

applicationEventHandlerIf.cashBoxClosed();

60 }

62 void cashBoxEventIf.paymentMode(PaymentMode paymentMode) {

applicationEventHandlerIf.paymentMode(paymentMode);

64 }

66 void scannerEventIf.productBarcodeScanned(ProductBarcode barcode) {

applicationEventHandlerIf.productBarcodeScanned(barcode);

68 }

70 void eventBusIf.changeAmountCalculated(CashAmount changeAmount) {

printerIf.changeAmountCalculated(changeAmount);
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72 cashBoxControlIf.changeAmountCalculated(changeAmount);

cashDeskGUIIf.changeAmountCalculated(changeAmount);

74 }

76 void eventBusIf.expressModeEnabled() {

lightDisplayControlIf.expressModeEnabled();

78 cardReaderControlIf.expressModeEnabled();

cashDeskGUIIf.expressModeEnabled();

80 }

82 void eventBusIf.expressModeDisabled() {

lightDisplayControlIf.expressModeDisabled();

84 cardReaderControlIf.expressModeDisabled();

cashDeskGUIIf.expressModeDisabled();

86 }

88 void eventBusIf.runningTotalChanged(Product product, CashAmount runningTotal) {

printerIf.runningTotalChanged(product, runningTotal);

90 cashDeskGUIIf.runningTotalChanged(product, runningTotal);

}

92

void eventBusIf.invalidCreditCard() {

94 cashDeskGUIIf.invalidCreditCard();

}

96

void eventBusIf.creditCardScanFailed() {

98 cashDeskGUIIf.creditCardScanFailed();

}

100

void eventBusIf.productBarcodeNotValid() {

102 cashDeskGUIIf.productBarcodeNotValid();

}

104

void expressModeControlIf.expressModeEnabled() {

106 applicationEventHandlerIf.expressModeEnabled();

}

108

void expressModeControlIf.expressModeDisabled() {

110 applicationEventHandlerIf.expressModeDisabled();

}

112 }

}
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1.8.22 CommonBus Black-Box

// the common bus just forwards messages to the coordinator

2

component CommonBus {

4 interfaces

server interface SaleRegisteredIf saleRegisteredIf;

6 client interface SaleRegisteredIf saleRegisteredEventIf;

8 services

service {

10 policy {

serveOldest(saleRegisteredIf)*

12 }

14 void saleRegisteredIf.bookSale(Sale sale) {

saleRegisteredEventIf.bookSale(sale);

16 }

}

18 }
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