Skip to main content

Abstract

In the field of robust optimization, the goal is to provide solutions to combinatorial problems that hedge against variations of the numerical parameters. This constitutes an effort to design algorithms that are applicable in the presence of uncertainty in the definition of the instance. We study the single machine scheduling problem with the objective to minimize the weighted sum of completion times. We model uncertainty by replacing the vector of numerical values in the description of the instance by a set of possible vectors, called scenarios. The goal is to find the schedule with minimum value in the worst-case scenario.

We first show that the general problem is intractable by proving that it cannot be approximated within O(log1 − ε n) for any ε> 0, unless NP has quasi-polynomial algorithms. We then study more tractable special cases and obtain an LP based 2-approximation algorithm for the unweighted case. We show that our analysis is tight by providing a matching lower bound on the integrality gap of the LP. Moreover, we prove that the unweighted version is NP-hard to approximate within a factor less than 6/5. We conclude by presenting a polynomial time algorithm based on dynamic programming for the case when the number of scenarios and the values of the instance are bounded by some constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aissi, H., Bazgan, C., Vanderpooten, D.: Approximating min-max (regret) versions of some polynomial problems. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 428–438. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Arora, S., Lund, C.: Hardness of approximations. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems. PWS (1995)

    Google Scholar 

  3. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Programming Series B 98, 49–71 (2002)

    Article  MathSciNet  Google Scholar 

  4. Birge, J., Louveaux, F.: Introduction to stochastic programming. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  5. Chekuri, C., Motwani, R.: Precedence constrained scheduling to minimize sum of weighted completion times on a single machine. Discrete Applied Mathematics 98(1-2), 29–38 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chudak, F.A., Hochbaum, D.S.: A half-integral linear programming relaxation for scheduling precedence-constrained jobs on a single machine. Operations Research Letters 25, 199–204 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Correa, J.R., Schulz, A.S.: Single machine scheduling with precedence constraints. Mathematics of Operations Research 30(4), 1005–1021 (2005); Extended abstract in Proceedings of the 10th Conference on Integer Programming and Combinatorial Optimization (IPCO 2004), pp. 283–297 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered pcp and the hardness of hypergraph vertex cover. In: STOC 2003: Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pp. 595–601. ACM, New York (2003)

    Chapter  Google Scholar 

  9. Feige, U., Jain, K., Mahdian, M., Mirrokni, V.S.: Robust combinatorial optimization with exponential scenarios. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 439–453. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Graham, R., Lawler, E., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics 5, 287–326 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion time: off-line and on-line algorithms. Mathematics of Operations Research 22, 513–544 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kasperski, A., Zieliński, P.: On the existence of an fptas for minmax regret combinatorial optimization problems with interval data. Operations Research Letters 35(4), 525–532 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Khot, S.: On the power of unique 2-prover 1-round games. In: IEEE Conference on Computational Complexity, p. 25 (2002)

    Google Scholar 

  14. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. In: Proc. of 18th IEEE Annual Conference on Computational Complexity (CCC), pp. 379–386 (2003)

    Google Scholar 

  15. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  16. Lawler, E.L.: Sequencing jobs to minimize total weighted completion time subject to precedence constraints. Annals of Discrete Mathematics 2, 75–90 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  17. Margot, F., Queyranne, M., Wang, Y.: Decompositions, network flows and a precedence constrained single machine scheduling problem. Operations Research 51(6), 981–992 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Potts, C.N.: An algorithm for the single machine sequencing problem with precedence constraints. Mathematical Programming Study 13, 78–87 (1980)

    MATH  MathSciNet  Google Scholar 

  19. Schulz, A.S.: Scheduling to minimize total weighted completion time: Performance guarantees of LP-based heuristics and lower bounds. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 301–315. Springer, Heidelberg (1996)

    Google Scholar 

  20. Schulz, A.S.: Scheduling to minimize total weighted completion time: performance guarantees of LP-based heuristics and lower bounds. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 301–315. Springer, Heidelberg (1996)

    Google Scholar 

  21. Schuurman, P., Woeginger, G.J.: Polynomial time approximation algorithms for machine scheduling: ten open problems. Journal of Scheduling 2(5), 203–213 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Smith, W.E.: Various optimizers for single-stage production. Naval Research Logistics Quarterly 3, 59–66 (1956)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashish Goel Klaus Jansen José D. P. Rolim Ronitt Rubinfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mastrolilli, M., Mutsanas, N., Svensson, O. (2008). Approximating Single Machine Scheduling with Scenarios. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2008 2008. Lecture Notes in Computer Science, vol 5171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85363-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85363-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85362-6

  • Online ISBN: 978-3-540-85363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics