Skip to main content

On the Query Complexity of Testing Orientations for Being Eulerian

  • Conference paper
Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques (APPROX 2008, RANDOM 2008)

Abstract

We consider testing directed graphs for being Eulerian in the orientation model introduced in [15]. Despite the local nature of the property of being Eulerian, it turns out to be significantly harder for testing than other properties studied in the orientation model. We show a non-constant lower bound on the query complexity of 2-sided tests and a linear lower bound on the query complexity of 1-sided tests for this property. On the positive side, we give several 1-sided and 2-sided tests, including a sub-linear query complexity 2-sided test for general graphs. For special classes of graphs, including bounded-degree graphs and expander graphs, we provide improved results. In particular, we give a 2-sided test with constant query complexity for dense graphs, as well as for expander graphs with a constant expansion parameter.

A full version is available at http://www.cs.technion.ac.il/~oyahalom/EulerianOrientations.pdf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Shapira, A.: Testing subgraphs in directed graphs. J. Comput. Syst. Sci. 69(3), 354–382 (2004) (a preliminary version appeared in Proc. of STOC 2003, pp. 700-709)

    Article  MATH  MathSciNet  Google Scholar 

  2. Babai, L.: On the diameter of Eulerian orientations of graphs. In: Proceedings of the 17th SODA, pp. 822–831 (2006)

    Google Scholar 

  3. Bender, M., Ron, D.: Testing properties of directed graphs: Acyclicity and connectivity. Random Structures and Algorithms, 184–205 (2002)

    Google Scholar 

  4. Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: Some 3CNF properties are hard to test. SIAM J. Computing 35(1), 1–21 (2005) (a preliminary version appeared in Proc.35th STOC, 2003)

    Article  MathSciNet  Google Scholar 

  5. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. Journal of Computer and System Sciences 47, 549–595 (1993) (a preliminary version appeared in Proc. 22nd STOC, 1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brightwell, G.R., Winkler, P.: Counting Eulerian circuits is #P-complete. In: Demetrescu, C., Sedgewick, R., Tamassia, R. (eds.) Proc. 7th ALENEX and 2nd ANALCO 2005 (Vancouver BC), pp. 259–262. SIAM Press, Demetrescu (2005)

    Google Scholar 

  7. Chakraborty, S., Fischer, E., Lachish, O., Matsliah, A., Newman, I.: Testing st-Connectivity. In: Proceedings of the 11th RANDOM and the 10th APPROX, pp. 380–394 (2007)

    Google Scholar 

  8. Fischer, E.: The art of uninformed decisions: A primer to property testing. In: Paun, G., Rozenberg, G., Salomaa, A. (eds.) Current Trends in Theoretical Computer Science: The Challenge of the New Century, vol. I, pp. 229–264. World Scientific Publishing, Singapore (2004)

    Google Scholar 

  9. Fischer, E., Yahalom, O.: Testing convexity properties of tree colorings. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 109–120. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Fleishcner, H.: Eulerian graphs and related topics, Part 1. Vol. 1. Annals of Discrete Mathematics 45 (1990)

    Google Scholar 

  11. Fleishcner, H.: Eulerian graphs and related topics, Part 1. Vol. 2. Annals of Discrete Mathematics 50 (1991)

    Google Scholar 

  12. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. JACM 45(4), 653–750 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica 32(2), 302–343 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Halevy, S., Lachish, O., Newman, I., Tsur, D.: Testing properties of constraint-graphs. In: Proceedings of the 22nd IEEE Annual Conference on Computational Complexity (CCC 2007), pp. 264–277 (2007)

    Google Scholar 

  15. Halevy, S., Lachish, O., Newman, I., Tsur, D.: Testing orientation properties, technical report, Electronic Colloquium on Computational Complexity (ECCC), 153 (2005)

    Google Scholar 

  16. Ibaraki, T., Karzanov, A.V., Nagamochi, H.: A fast algorithm for finding a maximum free multiflow in an inner Eulerian network and some generalizations. Combinatorica 18(1), 61–83 (1988)

    Article  MathSciNet  Google Scholar 

  17. Kaufman, T., Krivelevich, M., Ron, D.: Tight bounds for testing bipartiteness in general graphs. SICOMP 33(6), 1441–1483 (2004)

    MATH  MathSciNet  Google Scholar 

  18. Lovász, L.: On some connectivity properties of Eulerian graphs. Acta Math. Hung. 28, 129–138 (1976)

    Article  MATH  Google Scholar 

  19. Mihail, M., Winkler, P.: On the number of Eulerian orientations of a graph. Algorithmica 16(4/5), 402–414 (1996)

    MATH  MathSciNet  Google Scholar 

  20. Newman, I.: Testing of Functions that have small width Branching Programs. SIAM J. Computing 31(5), 1557–1570 (2002) (a preliminary version appeared in Proc. 41st FOCS, 2000)

    Article  MATH  Google Scholar 

  21. Parnas, M., Ron, D.: Testing the diameter of graphs. Random Struct. and Algorithms 20(2), 165–183 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. USA 98, 9748–9753 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Robinson, R.W.: Enumeration of Euler graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory, pp. 147–153. Academic Press, New York (1969)

    Google Scholar 

  24. Ron, D.: Property testing (a tutorial). In: Rajasekaran, S., Pardalos, P.M., Reif, J.H., Rolim, J.D.P. (eds.) Handbook of Randomized Computing, vol. II, ch.15. Kluwer Press, Dordrecht (2001)

    Google Scholar 

  25. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to program testing. SIAM J. Computing 25, 252–271 (1996) (first appeared as a technical report, Cornell University, 1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tutte, W.T.: Graph theory. Addison-Wesley, New York (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashish Goel Klaus Jansen José D. P. Rolim Ronitt Rubinfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fischer, E., Lachish, O., Newman, I., Matsliah, A., Yahalom, O. (2008). On the Query Complexity of Testing Orientations for Being Eulerian. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2008 2008. Lecture Notes in Computer Science, vol 5171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85363-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85363-3_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85362-6

  • Online ISBN: 978-3-540-85363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics