Abstract
We give an algorithm that with high probability properly learns random monotone DNF with t(n) terms of length ≈ logt(n) under the uniform distribution on the Boolean cube {0,1}n. For any function t(n) ≤ poly(n) the algorithm runs in time poly(n,1/ε) and with high probability outputs an ε-accurate monotone DNF hypothesis. This is the first algorithm that can learn monotone DNF of arbitrary polynomial size in a reasonable average-case model of learning from random examples only.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amano, K., Maruoka, A.: On learning monotone boolean functions under the uniform distribution. In: Proc. 13th ALT, pp. 57–68 (2002)
Aizenstein, H., Pitt, L.: On the learnability of disjunctive normal form formulas. Machine Learning 19, 183–208 (1995)
Blum, A., Burch, C., Langford, J.: On learning monotone boolean functions. In: Proc. 39th FOCS, pp. 408–415 (1998)
Blum, A., Furst, M., Jackson, J., Kearns, M., Mansour, Y., Rudich, S.: Weakly learning DNF and characterizing statistical query learning using Fourier analysis. In: Proc. 26th STOC, pp. 253–262 (1994)
Blum, A.: Learning a function of r relevant variables (open problem). In: Proc. 16th COLT, pp. 731–733 (2003)
Blum, A.: Machine learning: a tour through some favorite results, directions, and open problems. In: FOCS 2003 tutorial slides (2003)
Bshouty, N., Tamon, C.: On the Fourier spectrum of monotone functions. Journal of the ACM 43(4), 747–770 (1996)
Hancock, T., Mansour, Y.: Learning monotone k-μ DNF formulas on product distributions. In: Proc. 4th COLT, pp. 179–193 (1991)
Jackson, J.: An efficient membership-query algorithm for learning DNF with respect to the uniform distribution. JCSS 55, 414–440 (1997)
Jackson, J., Servedio, R.: Learning random log-depth decision trees under the uniform distribution. SICOMP 34(5), 1107–1128 (2005)
Jackson, J., Servedio, R.: On learning random DNF formulas under the uniform distribution. Theory of Computing 2(8), 147–172 (2006)
Jackson, J., Tamon, C.: Fourier analysis in machine learning. In: ICML/COLT 1997 tutorial slides (1997)
Kearns, M., Li, M., Valiant, L.: Learning Boolean formulas. Journal of the ACM 41(6), 1298–1328 (1994)
Kučera, L., Marchetti-Spaccamela, A., Protassi, M.: On learning monotone DNF formulae under uniform distributions. Information and Computation 110, 84–95 (1994)
Kearns, M., Vazirani, U.: An introduction to computational learning theory. MIT Press, Cambridge (1994)
Mansour, Y.: An O(n loglogn) learning algorithm for DNF under the uniform distribution. JCSS 50, 543–550 (1995)
Mossel, E., O’Donnell, R.: On the noise sensitivity of monotone functions. Random Structures and Algorithms 23(3), 333–350 (2003)
O’Donnell, R., Servedio, R.: Learning monotone decision trees in polynomial time. In: Proc. 21st CCC, pp. 213–225 (2006)
Sellie, L.: Learning Random Monotone DNF Under the Uniform Distribution. In: Proc. 21st COLT (to appear, 2008)
Servedio, R.: On learning monotone DNF under product distributions. Information and Computation 193(1), 57–74 (2004)
Sakai, Y., Maruoka, A.: Learning monotone log-term DNF formulas under the uniform distribution. Theory of Computing Systems 33, 17–33 (2000)
Valiant, L.: A theory of the learnable. CACM 27(11), 1134–1142 (1984)
Verbeurgt, K.: Learning DNF under the uniform distribution in quasi-polynomial time. In: Proc. 3rd COLT, pp. 314–326 (1990)
Verbeurgt, K.: Learning sub-classes of monotone DNF on the uniform distribution. In: Proc. 9th ALT, pp. 385–399 (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jackson, J.C., Lee, H.K., Servedio, R.A., Wan, A. (2008). Learning Random Monotone DNF. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2008 2008. Lecture Notes in Computer Science, vol 5171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85363-3_38
Download citation
DOI: https://doi.org/10.1007/978-3-540-85363-3_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85362-6
Online ISBN: 978-3-540-85363-3
eBook Packages: Computer ScienceComputer Science (R0)