Skip to main content

Breaking the ε-Soundness Bound of the Linearity Test over GF(2)

  • Conference paper
Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques (APPROX 2008, RANDOM 2008)

Abstract

For Boolean functions that are ε-away from the set of linear functions, we study the lower bound on the rejection probability (denoted by rej(ε)) of the linearity test suggested by Blum, Luby and Rubinfeld. This problem is one of the most extensively studied problems in property testing of Boolean functions.

The previously best bounds for rej(ε) were obtained by Bellare, Coppersmith, Håstad, Kiwi and Sudan. They used Fourier analysis to show that rej(ε) for every \(0 \leq \epsilon \leq \frac{1}{2}\). They also conjectured that this bound might not be tight for ε’s that are close to 1/2. In this paper we show that this indeed is the case. Specifically, we improve the lower bound of rej(ε) ≥ ε by an additive term that depends only on ε: rej(ε) \(\geq \epsilon + \min \{1376\epsilon^{3}(1-2\epsilon)^{12}, \frac{1}{4}\epsilon(1-2\epsilon)^{4}\}\), for every \(0 \leq \epsilon \leq \frac{1}{2}\). Our analysis is based on a relationship between rej(ε) and the weight distribution of a coset of the Hadamard code. We use both Fourier analysis and coding theory tools to estimate this weight distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing low-degree polynomials over GF(2). In: Proceedings of Random 2003, pp. 188–199 (2003)

    Google Scholar 

  2. Aumann, Y., Håstad, J., Rabin, M., Sudan, M.: Linear-consistency testing. J. Comp. Sys. Sci. 62(4), 589–607 (2001)

    Article  MATH  Google Scholar 

  3. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has twoprover interactive protocols. In: Computational Complexity, vol. 1(1), pp. 3–40 (1991); Earlier version in FOCS 1990

    Google Scholar 

  4. Bellare, M., Coppersmith, D., Håstad, J., Kiwi, M., Sudan, M.: Linearity testing over characteristic two. IEEE Transactions on Information Theory 42(6), 1781–1795 (1996); Earlier version in FOCS 1995

    Article  MATH  Google Scholar 

  5. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCP and non-approximability - towards tight results. SIAM J. on Comput. 27(3), 804–915 (1998); Earlier version in FOCS 1995

    Article  MATH  MathSciNet  Google Scholar 

  6. Bellare, M., Goldwasser, S., Lund, C., Russell, A.: Efficient probabilistically checkable proofs and applications to approximation. In: Proc. 25th Annual ACM Symposium on the Theory of Computing, pp. 304–294 (1993)

    Google Scholar 

  7. Bellare, M., Sudan, M.: Improved non-approximability results. In: Proc. 26th Annual ACM Symposium on the Theory of Computing, pp. 184–193 (1994)

    Google Scholar 

  8. Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.: Randomness-efficient low degree tests and short PCPs via epsilon-biased sets. In: Proc. 35th Annual ACM Symposium on the Theory of Computing, pp. 612–621 (2003)

    Google Scholar 

  9. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. J. Comp. Sys. Sci. 47, 549–595 (1993); Earlier version in STOC 1990

    Article  MATH  MathSciNet  Google Scholar 

  10. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Approximating clique is almost NP-complete. In: Journal of the ACM; Earlier version in FOCS 1991

    Google Scholar 

  11. Fischer, E.: The art of uninformed decisions: A primer to property testing. Bulletin of the European Association for Theoretical Computer Science 75, 97–126 (2001)

    MATH  Google Scholar 

  12. Goldreich, O., Goldwaser, S., Ron, D.: Property testing and its connection to learning and approximation. Journal of the ACM 45, 653–750 (1998); Earlier version in FOCS 1996

    Article  MATH  MathSciNet  Google Scholar 

  13. Håstad, J.: Some optimal inapproximability results. Journal of the ACM 48(4), 798–859 (2001); Earlier version in STOC 1997

    Article  MATH  MathSciNet  Google Scholar 

  14. Håstad, J., Wigderson, A.: Simple analysis of graph tests for linearity and PCP. Random Structures and Algorithms 22, 139–160 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jutla, C.S., Patthak, A.C., Rudra, A., Zuckerman, D.: Testing low-degree polynomials over prime fields. In: Proc. 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 423–432 (2004)

    Google Scholar 

  16. Kiwi, M.: Algebraic testing and weight distributions of codes. Theor. Comp. Sci. 299(1-3), 81–106 (2003); Earlier version appeared as ECCC TR97-010 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kaufman, T., Litsyn, S.: Almost orthogonal linear codes are locally testable. In: Proc. 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 317–326 (2005)

    Google Scholar 

  18. Kaufman, T., Litsyn, S., Xie, N.: Breaking the ε-soundness bound of the linearity test over GF(2). Technical Report TR07-098, Electronic Colloquium on Computational Complexity (2007)

    Google Scholar 

  19. Kaufman, T., Ron, D.: Testing polynomials over general fields. In: Proc. 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 413–422 (2004)

    Google Scholar 

  20. Plotkin, M.: Binary codes with specified minimum distance. IRE Transactions on Information Theory 6, 445–450 (1960)

    Article  MathSciNet  Google Scholar 

  21. Ron, D.: Property testing (a tutorial). In: Pardalos, P.M., Rajasekaran, S., Reif, J., Rolim, J.D.P. (eds.) Handbook of Randomized Computing, pp. 597–649. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  22. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM J. on Comput. 25(2), 252–271 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rubinfeld, R.: Sublinear time algorithms. In: Proceedings of the International Congress of Mathematicians (2006)

    Google Scholar 

  24. Samorodnitsky, A.: Low-degree tests at large distances. In: Proc. 39th Annual ACM Symposium on the Theory of Computing, pp. 506–515 (2007)

    Google Scholar 

  25. Samorodnitsky, A., Trevisan, L.: A PCP characterization of NP with optimal amortized query complexity. In: Proc. 32nd Annual ACM Symposium on the Theory of Computing, pp. 191–199 (2000)

    Google Scholar 

  26. Samorodnitsky, A., Trevisan, L.: Gower uniformity, influence of variables and PCPs. In: Proc. 38th Annual ACM Symposium on the Theory of Computing, pp. 11–20 (2006)

    Google Scholar 

  27. Sudan, M., Trevisan, L.: Probabilistically checkable proofs with low amortized query complexity. In: Proc. 39th Annual IEEE Symposium on Foundations of Computer Science, pp. 18–27 (1998)

    Google Scholar 

  28. Shpilka, A., Wigderson, A.: Derandomizing homomorphism testing in general groups. SIAM J. on Comput. 36(4), 1215–1230 (2006); Earlier version in STOC 2004

    Article  MATH  MathSciNet  Google Scholar 

  29. Trevisan, L.: Recycling queries in PCPs and linearity tests. In: Proc. 30th Annual ACM Symposium on the Theory of Computing, pp. 299–308 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashish Goel Klaus Jansen José D. P. Rolim Ronitt Rubinfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaufman, T., Litsyn, S., Xie, N. (2008). Breaking the ε-Soundness Bound of the Linearity Test over GF(2). In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2008 2008. Lecture Notes in Computer Science, vol 5171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85363-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85363-3_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85362-6

  • Online ISBN: 978-3-540-85363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics