
Using Swarm-GAP for Distributed Task
Allocation in Complex Scenarios

Paulo R. Ferreira Jr.1,2, Felipe S. Boffo1, and Ana L. C. Bazzan1

1 Instituto de Informática, Universidade Federal do Rio Grande do Sul
Caixa Postal 15064, CEP 91501-970, Porto Alegre, RS, Brasil

{prferreiraj,fboffo,bazzan}@inf.ufrgs.br
2 Instituto de Ciências Exatas e Tecnológicas, Centro Universitário Feevale

RS239, 2755, CEP 93352-000, Novo Hamburgo, RS, Brasil

Abstract. This paper addresses distributed task allocation in complex
scenarios modeled using the distributed constraint optimization problem
(DCOP) formalism. It is well known that DCOP, when used to model
complex scenarios, generates problems with exponentially growing num-
ber of parameters. However, those scenarios are becoming ubiquitous in
real-world applications. Therefore, approximate solutions are necessary.
We propose and evaluate an algorithm for distributed task allocation.
This algorithm, called Swarm-GAP, is based on theoretical models of
division of labor in social insect colonies. It uses a probabilistic decision
model. Swarm-GAP is experimented both in a scenario from RoboCup
Rescue and an abstract simulation environment. We show that Swarm-
GAP achieves similar results as other recent proposed algorithm with
a reduction in communication and computation. Thus, our approach is
highly scalable regarding both the number of agents and tasks.

1 Introduction

It is shown in [1] that optimal distributed coordination is associated with a
high computational complexity, especially when agents lack full observability of
the environment they operate. Even the less restrictive situations are proved
to be NEXP-complete. However lack of full observability is a characteristic of
many problems in the real world, where agents must reason with incomplete and
uncertain information, in a timely fashion in order to cope with dynamic envi-
ronments. Given these issues, Lesser [3] points out the fundamental principles
for the construction of a multiagent system: agent flexibility. Flexibility would
enable agents to react dynamically to the emerging state of the coordination
effort.

When one exchanges centralized for distributed control, or trade total ob-
servability by local information, self-organization becomes key. To show good
performance in realistic applications, multiagent systems must have a certain
level of self-organization. Since the most natural way to organize work among
agents is the decomposition of the objective in tasks, task allocation is an impor-
tant part of the coordination problem. Research regarding multiagent systems



coordination through distributed task allocation has shown significant advances
in the last few years. One successful direction, under the multiagent community
perspective, has been the distributed constraint optimization problem (DCOP)
framework.

Models of task allocation in complex environments, when modeled as a
DCOP, yield hard problems, which cannot be treated with the traditional op-
timal/complete approaches to DCOP [5]. Thus complex DCOP scenarios in-
troduce new challenges for the DCOP research. We see a complex scenario in
distributed task allocation as the one in which, even small instances formalized
as a DCOP generate large problems with exponentially growing number of pa-
rameters. Given that in the real-world we usually have large instances and these
are dynamic, it is easy to conclude that new techniques are necessary.

We propose Swarm-GAP, an approximated algorithm for distributed task al-
location based on theoretical models of division of labor in social insects colonies.
This method is highly scalable regarding both the number of agents and tasks,
and can solve the E-GAP (see next section) for dynamic task allocation in com-
plex DCOP scenarios. Cooperative agents running our algorithm can coordinate
their actions with low communication and computation.

We empirically evaluated the Swarm-GAP method on an abstract, domain-
independent simulator, as well as in a scenario of the RoboCup Rescue simula-
tor. Swarm-GAP is compared mainly to LA-DCOP [8], another approximated
method for DCOP.

This paper is organized as follows: Section 2 discusses the use of the E-
GAP model for task allocation in dynamic environments, and how it leads to a
complex DCOP scenario. Section 3 presents our motivation to use swarm based
heuristics and introduces the Swarm-GAP. The empirical evaluation of Swarm-
GAP is shown in Section 4, together with a discussion on the results, while
Section 5 presents our conclusions and future directions of this work.

2 Task Allocation Models and Complex DCOP Scenarios

In many real-world scenarios, a large number of agents must perform a large
number of tasks. Besides, these tasks and their characteristics change over time
and little information about the whole scenario, if any, is available to all agents.
Each agent has different capabilities and limited resources to perform each task.
The problem is how to find, in a distributed fashion, an appropriate tasks al-
location that represents the best match among agents and tasks. This kind of
scenario is becoming ubiquitous in manufacturing, robotics, computing, etc.

The Generalized Assignment Problem (GAP) deals with the assignment of
tasks to agents, respecting agents resources, in order to maximize the total re-
ward. GAP is known to be NP-complete [9]. It can be formalized as follows. Let
us define J as the set of tasks to be allocated and I the set of agents. Each
agent i ∈ I has a limited amount of resource ri (a single type of resource is
used). When a task j ∈ J is executed by agent i, task j consumes cij units of



i’s resource. Each agent i also has a capability kij (0 ≤ kij ≤ 1) to perform each
task j.

The allocation matrix A, where aij is the value of the i-th row and j-th
column, is given by Equation 1.

aij =
{

1 if j is allocated by i
0 otherwise (1)

An optimum solution to the problem is given by matrix A∗, which maxi-
mizes the system reward as stated by Equation 2, subject to the agents resource
limitations and the constraint of having only one agent allocated to each task.

A∗ = argmaxA′
∑

i∈I

∑

j∈J
kij ∗ a

′
ij (2)

such that

∀i ∈ I,
∑

j∈J
cij ∗ aij ≤ ri and ∀j ∈ J ,

∑

i∈I
aij ≤ 1

The GAP was extended by [8] to capture dynamic domains and interdepen-
dence among tasks. This extension, called Extended-GAP (E-GAP), improves
the model in two ways:

Allocation constraints among tasks. Tasks in E-GAP can be interrelated
by an AND constraint. All interrelated tasks by this constraint must be
allocated at the same time to be considered by the reward computation.
Following [8], let us define ./ = {α1, ..., αp}, where αk = {jk1 , ..., jkq}
denotes the k-th set of an AND constrained tasks. Thus, the partial reward
wij for allocating task j to agent i is given by Equation 3.

wij =





kij ∗ aij if ∀αk ∈ ./, j /∈ αk

kij ∗ aij if ∃αk ∈ ./ with j ∈ αk∧
∀jku ∈ αk, axjku

6= 0
0 otherwise

(3)

Reward dynamically computed over time. The total reward W is com-
puted in E-GAP as the sum of the agents partial rewards (Eq. 3) in the
last t time steps. In this case, the sequence of allocations over time is con-
sidered against the single allocation used in the GAP. Additionally, a delay
cost dj is used in order to punish the agents when task j was not allocated
by time t. The objective of the E-GAP is to maximize the total reward W
given by Equation 4.

W =
∑

t

∑

it∈It

∑

jt∈J t

wt
ij ∗ at

ij −
∑

t

∑

jt∈J t

(1− at
ij) ∗ dt

j (4)



such that
∀t∀it ∈ It,

∑

jt∈J t

ct
ij ∗ at

ij ≤ rt
i (5)

and
∀t∀jt ∈ J t,

∑

it∈It

at
ij ≤ 1 (6)

Several task allocation situations in large scale and dynamic scenarios can be
modeled as an E-GAP [8]. Thus, the question now is how to find the best solution
to E-GAP. The choice to model the E-GAP as a DCOP is mainly motivated by
the recent advances in DCOP algorithms.

DCOP consists of n variables V = {x1, x2, ..., xn} that can assume values
from a discrete domain D1, D2, ..., Dn respectively. Each variable is assigned
to one agent which has the control over its value. The goal of the agents is
to choose values for the variables to optimize a global objective function. This
function is described as the sum over a set of valued constraints related to pairs
of variables. Thus, for a pair of variables xk, xl, there is a cost function defined
as fkl : Dk ×Dl → N .

In DCOP, an E-GAP can be formalized as follows:

– Each variable xi ∈ V represents each agent i;
– Let us define a global domain D, whose elements are the set of all possible

subsets of J . The domain Di of xi is the set of elements from D, such that
∀d ∈ Di,

∑
j∈d cij ≤ ri. This means that, to include d in Di, the agent i

must have enough resources to perform the entire task subset (each agent
can allocate more than one task in E-GAP).

– The constraint cost function fkl, related to the variables xk and xl, is given
by the inverse of the sum of the reward obtained by each agent (Eq. 3).
Besides, fkl must prevent that more than one agent allocate the same task.
Equation 7 defines fkl.

fkl =




−(

∑

j∈Dk

wkj +
∑

j∈Dl

wlj) if akj 6= alj

∞ otherwise
(7)

– There is one constraint to each pair of variables in V . We compute the cost
as the inverse of reward because DCOP searches for minimizing the cost and
E-GAP for maximizing the reward.

As we can see, an E-GAP formalized as a DCOP yields a large number
of constraints, since there must be one for each pair of variables (a complete
graph). The total number of required constraints can be computed as n(n−1)

2 ,
where n is the number of agents (represented as variables). The size of variables’
domain in the worst case, where agents have enough resources to allocate all tasks
simultaneously, is |P(J )| = 2|J |. The number of constraints grows exponentially



according to the number of agents, while the size of variables’ domains grows
exponentially according to the number of tasks.

An important question about all DCOP algorithms is whether they are fast
enough to be applied in complex scenarios. This translates to whether the num-
ber and size of exchanged messages turns the approach feasible and efficient. In
distributed approaches, communication among agents usually imposes demands
that can cause network overload. Complex problems usually mean that the plan-
ning (for allocation) and action should be treated as quickly as possible. Most
of the proposed approaches yields good results in simple scenarios, but there is
a lack of analysis regarding complex ones.

Most complete algorithms for DCOP were tested in small scenarios like the
MaxSAT 3-coloring problem. It is an interesting one as this problem can be
considered a benchmark, but it is not enough to deal with more complicated
problems. The largest and hardest scenario reported in the literature where
the DCOP algorithms were applied are related to distributed meeting schedule
(DMS) [4, 7].

In [4], the authors analyze the performance of the Adopt algorithm with
an instance of DMS problem with 47 variables, an 8-element domain and 123
constraints. It was shown that using Adopt, agents exchange about 750.000
messages to compute the solution. In [7] the DPOP was experimented with a
DMS instance of 136 variables, an 8-element domain and 161 constraints. In
this case, 132 messages were exchanged by the agents. According to the authors,
the number of messages grows linearly according to the number of constraints.
However, the size of messages grows exponentially and the time necessary to
compute and send this messages are critic to the performance.

Complex scenarios, as we define, result in problems dramatically more hard
then the ones cited above. Let us suppose an E-GAP scenario with 100 agents
and 100 tasks. This is a small scenario if thinking in large scale (thousands of
tasks and agents). The number of variables is equal to the number of agents. The
total number of constraints can be computed, as we mentioned before, as n(n−1)

2
where n is the number of agents: 4950 for 100 agents. Assuming that each agent
has, on average, enough resources to perform only 3 tasks simultaneously, the size
of the variables domain is equal to the number of possible tasks’ subsets (each
with 1, 2 or 3 tasks), namely 166,750 elements. These figures are much higher
than the ones related to the DMS problem. The amount of messages or their size
as well as the computational effort in DCOP algorithms grow exponentially with
those numbers. Thus, to deal with complex scenarios, it is necessary to minimize
the communication (including the messages size) among the agents as much as
possible. Besides, in this kind of problem, it is better to get an approximated
solution as fast as possible than to find the optimal one in an unfeasible time.

Most DCOP algorithms have approximated it is possible to define an upper
bound for the number or size of messages. However, normally the mechanisms
used by those algorithms become very inefficient as the scale of a complex sce-
nario grows. Since it is not possible to use the optimal algorithms, nor their



variants, we must look for other heuristic approaches, based on different mech-
anisms.

In [8], authors present an approximated algorithm called Low-communication
Approximation DCOP (LA-DCOP) to solve instances of E-GAP. LA-DCOP
outperforms DSA, another approximated algorithm able to deal with E-GAP,
both regarding solutions’ quality and number/size of messages. LA-DCOP uses
a token based protocol to improve communication performance. Agents perceive
a task in the environment, and either create a token to represent it or they
receive a token from another agent. An agent decides whether to allocate a task
based on a threshold and tries to maximize the use of its resources. After an
agent decides whether or not to allocate a task, it sends the token to another
randomly chosen agent.

3 Swarm-GAP

3.1 Motivation: Division of Labor in Swarms

Nature often rely on self-organization. There are several examples of self-
organized biological systems. We focus here on the social insect colonies – also
called swarms. A social insect colony with hundreds of thousand of members
operates without any explicit coordination. An individual worker cannot assess
the needs of the colony; it just has a fairly simple local information, and no one
is in charge of coordination. From individual workers aggregation, the colony
behavior emerges without any type of explicit coordination or planning. The
key feature of this emergent behavior is the plasticity in division of labor inside
the colony. Colonies respond to changing conditions by adjusting the ratios of
individual workers engaged in the various tasks. Observations regarding this be-
havior are the basis of the theoretical model described in [11]. In this model,
interactions among members of the colony and the individual perception of lo-
cal needs result in a dynamic distribution of tasks. This model describes task
distribution among individuals using the stimulus produced by tasks that need
to be performed and an individual response threshold related to each task. The
intensity of this stimulus can be associated with a pheromone concentration, a
number of encounters among individuals performing the task, or any other quan-
titative cue sensed by individuals. An individual that perceives a task stimulus
higher than its associated threshold, has a higher probability to perform this
task.

Assuming the existence of J tasks to be performed, each task j has a sj

stimulus associated. I different individuals can perform them, each individual i
having a response threshold θij associated to a task j, according the task’s type.
Individual i engages in the task j with probability:

Tθij (sj) =
s2

j

s2
j + θ2

ij

(8)



Each insect in the colony can potentially perform all types of tasks. However,
it is possible for individuals to specialize in some type of tasks based on mor-
phological aspects (polymorphism). Polymorphism plays a key rule to determine
the division of labor in ant colonies. It is possible to capture the physical variety
in the theoretical model by differentiating individual thresholds. The threshold
θij of the individual (i) for the task i decreases proportionally to the individ-
ual capability to perform these tasks capabilityi(j). Thus, individuals with large
capability for a set of tasks have higher tendency to perform tasks of this set.

θij = 1− capabilityi(j) (9)

where capabilityi(j) is the capability of individual i regarding to task j.
Social insects behavior seems to fit the requirements of complex problems

since they are the result of millions of years of survival-of-the-fittest evolution.

3.2 Swarm-GAP Algorithm

The aim of Swarm-GAP is to allow agents to decide individually which task to
execute in a simple and efficient way, minimizing computational and communi-
cation efforts. As in [8], we assume that the communication does not fail. In the
future we intend to relax this assumption and perform tests with unreliable com-
munication channels. Agents in Swarm-GAP decide which task to execute based
on the same mechanism used by social insects as shown in Equation 8. Each task
has the same associated stimulus, there is no priority on task allocation. The
stimulus s is the same for every task j and its value was empirically determined to
maximize the system reward, through direct experimentation. Swarm-GAP uses
polymorphism to setup the agents thresholds according to agents capabilities.
Equation 9 sets the agents threshold θij as 1 minus the capability capacityi(j)
of agent i to perform task j. This is so because threshold and capability are
inversely proportional values.

Algorithm 1 details Swarm-GAP. Agents running Swarm-GAP communicate
using a token based protocol, and react to two events: task perception and mes-
sage arriving. When an agent perceives some tasks, it creates a token composed
by these tasks (line 5), or it receives the token from another agent (line 10).
Once this is done, the agent has the right to determine which tasks to allocate
(lines 14 to 21) according to their tendency given by Equation 8. This decision
also depends on whether the agent has the resource which is required to perform
the task. The quantity of resource one agent has is decreased by the amount re-
quired by the task (line 19). Afterwards, the agent is marked as visited (line 23).
This prevent deadlocks, since it avoids passing the token to agents that already
received the token. At the end of this process, if the token still has available
tasks, a token message is sent to an agent randomly selected among those agents
which have not received the token in the current allocation (lines 24 to 29). The
size of the token message is proportional to the number of tasks.



Algorithm 1 Swarm-GAP(agentId)
1: loop
2: ev ← waitEvent()
3: if ev = task perception then
4: J ← set of new tasks
5: token ← newToken()
6: for all j ∈ J do
7: token.addTask(j, -1)
8: else
9: token ← receiveToken()

10:
11: r ← avaiableResources()
12: τ ← token.avaiableTasks()
13: for all t ∈ τ do
14: θt ← 1− capability(t)
15: if roulette() < Tθt(s) and r ≥ ct then
16: token.aloc(j, agentId)
17: r ← r − ct

18:
19: token.visited(agentId)
20: τ ← token.avaiableTasks()
21: if |τ | > 0 then
22: ı ← token.avaiableAgents()
23: i ← rand(ı)
24: sendToken(i)

4 Experiments and Results

Empirical evaluations of Swarm-GAP were conducted in an abstract, domain-
independent simulator, and in the RoboCup Rescue Simulator [2, 10].

The abstract simulator allows experimentation with a large number of agents
and tasks. In general, we have 2000 tasks in each experiment, with 5 different
classes randomly assigned to the tasks, and a variation in the number of agents
from 500 to 4000 (that means, the latter is twice the number of tasks). Tasks cost
are assigned uniformly from {0.25, 0.50, 0.75}. Each agent has 60% probability of
having a non-zero capability for each class. Capabilities are uniformly assigned,
with values ranging from 0 to 1. 60% of the tasks are AND inter-related in groups
of 5. When new tasks arise at each simulation cycle they are randomly perceived
by agents. The total number of tasks is kept constant, which means we modify
the tasks characteristics (10% of the tasks has a probability of 10% to have their
classes and demanded resources changed). At each simulation cycle, agents are
constrained in the number of messages they can send to a maximum of 20.

Rewards are computed over 1000 simulation cycles, where in each cycle one
allocation is performed. All data is averaged over 20 runs. Swarm-GAP is com-
pared with three methods: LA-DCOP, a distributed greedy algorithm, and a
centralized greedy algorithm. In the distributed greedy strategy, agents allocate



the local perceived tasks for which they have highest capability. The central
greedy strategy, used to benchmark other methods, allocates the appearing tasks
to the most capable available agent, i.e. it does this in a centralized way. This
simulation has exactly the same setup used by [8] to experiment LA-DCOP and,
according the authors, different values for these parameters do not affect the
results.

The other scenario used is the RoboCup Rescue [2]. The goal of the RoboCup
Rescue Simulation League is to provide a testbed for agent rescue teams acting
in large urban disasters. RoboCup Rescue is a complex multiagent domain char-
acterized by: agents’ heterogeneity, restricted access to information, long-term
planning, and real-time. In the RoboCup Rescue, each agent has perception lim-
ited to its surroundings. Agents are in contact by radio, but they are limited on
the number of messages they can exchange. As a cooperative multiagent system,
efficiency can be achieved with the correct coordination. Approaches based on
communication are not appropriate, because of the high communication con-
straints. According to [6], the challenge imposed by the environment can be
decomposed into a task allocation problem. The allocation sub problem that we
use in this paper concerns to the efficient assignment of fire brigade agents to the
task of extinguishing fire spots. Swarm-GAP is also compared with LA-DCOP
in this case and both methods are benchmarked by a greedy algorithm. This al-
gorithm considers a heuristic where brigade agents decide always to tackle their
shortest distant fire spots.

4.1 Abstract Simulator

In the first experiment, the aim is to find the best stimulus value (Equation
8) that maximizes the reward when the number of agents changes regarding
the number of tasks. In this case there are no tasks with AND constraints.
Figure 1 shows the rewards achieved for different values of stimulus and different
number of agents. We use different quantities of agents to experiment different
proportions related to the number of tasks (500 means 25% of the 2000 tasks,
1000 means 50%, and so on.)

In the second experiment, we measure the average number of messages per
simulation cycle, according to the number of agents, for different setup param-
eters of Swarm-GAP (stimulus 0.2 and 0.08) and LA-DCOP (threshold 0.0 and
0.8). As we can see in Figure 2, when LA-DCOP works with threshold equal to
zero, the number of messages exchanged is the smallest. Only on this case the
average number of messages exchanged by Swarm-GAP is significantly greater
than that of LA-DCOP. However, as we can see further on Figure 3, in this
specific case, the total reward is significantly lower for LA-DCOP in comparison
with Swarm-GAP. The total reward in E-GAP is computed as the sum of the
agents capabilities to each task they allocated.

In the third experiment, we evaluate Swarm-GAP comparing its results with
those achieved by the greedy centralized algorithm and LA-DCOP. Figure 3
shows the total reward, for different number of agents, achieved by Swarm-
GAP, with the best stimulus for each number of agents and LA-DCOP, also



 1.8e+06

 1.6e+06

 1.4e+06

 1.2e+06

 1e+06

 800000

 600000

 400000

 200000

 0

 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

T
o
ta

l 
re

w
a
rd

Stimulus

500

1000

1500

2000

2500

3000

3500

4000

Fig. 1. Total reward versus task stimulus, for different number of agents.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 4000 3500 3000 2500 2000 1500 1000 500

A
v

er
ag

e 
o

f 
to

ta
l 

m
es

sa
g

es
 p

er
 s

te
p

Number of agents

Swarm-GAP 0.08
Swarm-GAP 0.20

LA-DCOP 0.0
LA-DCOP 0.8

Fig. 2. Average number of messages per simulation cicle versus the number of agents.

with the best threshold for each number of agents. As expected, the greedy
approach outperforms both Swarm-GAP and LA-DCOP. Swarm-GAP performs
well achieving rewards that are only 20% lower (on average) than those achieved
by the greedy, and 15% lower than those of LA-DCOP.

To illustrate the advantages of Swarm-GAP related to LA-DCOP regarding
the number of exchanged messages, Figure 4 shows the average reward divided by
the total number of exchanged messages for different number of agents achieved
by Swarm-GAP with stimulus 0.2 and LA-DCOP with threshold 0.8. We use
this setup because in this case, both algorithms achieve to similar rewards. As
we can see, Swarm-GAP exchanges a significant lower number of messages.

Furthermore, as Swarm-GAP uses a probabilistic decision process, the com-
putation necessary for agents to make their decision is significantly lower than



 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 4000 3500 3000 2500 2000 1500 1000 500

T
o
ta

l 
re

w
ar

d

Number of agents

Swarm-GAP
Swarm-GAP 0.2

LA-DCOP
LA-DCOP 0.0

Greedy

Fig. 3. Total reward for different number of agents.

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 4000 3500 3000 2500 2000 1500 1000 500

A
v

er
ag

e 
re

w
ar

d
 p

er
 m

es
sa

g
e

Number of agents

Swarm-GAP 0.2
LA-DCOP 0.8

Fig. 4. Average reward divided by total number of exchanged messages, for different
number of agents.

in LA-DCOP. As mentioned in Section 2, an agent running LA-DCOP chooses
to allocate tasks which maximize the sum of its capabilities, while respecting its
resource constraints. This is a maximization problem that can be reduced to a
Binary Knapsack Problem (BKP), which is proved to be NP-complete. The com-
putational complexity of LA-DCOP depends of the complexity of its function to
deal with BKP. Each agent solves several instances of BKPs during a complete
allocation. Agents running Swarm-GAP chooses to allocate tasks according to a
probability computed by Equation 8, constrained by its available resources. This
is a simple one-shot decision process.

Regarding the average number of allocated tasks per simulation step, both
algorithms allocate almost the same number of tasks.



 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 4000 3500 3000 2500 2000 1500 1000 500

T
o
ta

l 
re

w
ar

d

Number of agents

Swarm-GAP 0.0
Swarm-GAP 0.3
Swarm-GAP 0.5
Swarm-GAP 0.8

Fig. 5. Total reward for different number of agents in the presence of AND constrained
tasks.

The last experiment with the abstract scenario measures the impact that
AND-constrained tasks have over the reward. In this experiment, 60% of the
tasks are AND constrained in groups of 5. Figure 5 shows the expected decrease
in the performance of Swarm-GAP when we consider the AND constraints and
several values for ω (Equation 8). Rewards improve when ω 6= 0, improving the
average performance in 25%.

4.2 Experiments on the RoboCup Rescue Simulator

In the following experiments, we evaluate Swarm-GAP comparing its results
with those achieved by LA-DCOP. Both methods are benchmarked by a greedy
approach based on a shortest distance heuristic.

We run our experiments in two partial maps of the Japanese city of Kobe
(commonly used in RoboCup Rescue simulations), using 30 fire brigade agents in
the first (Kobe) and twice this number in the second and largest map (Kobe 4).
For each map, we have tested two different scenarios for fire ignition points: 30
fires (Kobe1), 42 fires (Kobe2), 43 fires (Kobe 41) and 59 fires (Kobe 42). These
points were uniformelly distributed. To measure performance, we use a metric
which is the building area left (e.g. after an earthquake followed by a fire and the
intervention of the fire brigades). Table 1 and 2 list results obtained in the above
described scenarios. On the algorithm name column we also show the differents
threshold values for LA-DCOP and stimulus value for Swarm-GAP that were
experimented. All data is averaged over 20 runs of the simulator. Figure 6 depicts
only the best performance for each method, for different scenarios.

To compute agents capabilities in the RoboCup Rescue we use the Euclidian
distance from the fire brigade to the fire spot. Equation 10 show how this measure
is normalized by agents.



capability(t) =
max{distance(ti), ∀ti ∈ tasks} − distance(t)

max{distance(ti), ∀ti ∈ tasks} (10)

Table 1. Results from the Kobe map, showing the average building area left.

Kobe1 (30 fires) Kobe2 (42 fires)

Swarm-GAP 0.1 1.35× 107±0.08× 107 0.66× 107±0.89× 107

Swarm-GAP 0.2 1.25× 107±0.14× 107 0.65× 107±0.12× 107

Swarm-GAP 0.3 1.26× 107±0.14× 107 0.58× 107±0.12× 107

Swarm-GAP 0.4 1.13× 107±0.29× 107 0.57× 107±0.90× 107

Swarm-GAP 0.5 1.25× 107±0.18× 107 0.60× 107±0.11× 107

Swarm-GAP 0.6 1.12× 107±0.42× 107 0.59× 107±0.12× 107

LA-DCOP 0.1 1.04× 107±0.22× 107 0.45× 107±0.11× 107

LA-DCOP 0.2 1.09× 107±0.19× 107 0.50× 107±0.72× 107

LA-DCOP 0.3 1.08× 107±0.23× 107 0.51× 107±0.10× 107

LA-DCOP 0.4 0.97× 107±0.21× 107 0.51× 107±0.83× 107

LA-DCOP 0.5 0.77× 107±0.14× 107 0.48× 107±0.11× 107

LA-DCOP 0.6 0.70× 107±0.15× 107 0.46× 107±0.12× 107

Shortest distance 1.31× 107±0.10× 107 0.97× 107± 14× 107

Table 2. Results from the Kobe 4 map, showing the average building area left.

Kobe 41 (43 fires) Kobe 42 (59 fires)

Swarm-GAP 0.1 4.80× 107±0.09× 107 2.04× 107±0.09× 107

Swarm-GAP 0.2 4.78× 107±0.04× 107 1.96× 107±0.11× 107

Swarm-GAP 0.3 4.77× 107±0.14× 107 1.89× 107±0.18× 107

Swarm-GAP 0.4 4.76× 107±0.10× 107 1.78× 107±0.12× 107

Swarm-GAP 0.5 4.75× 107±0.10× 107 1.80× 107±0.08× 107

Swarm-GAP 0.6 4.76× 107±0.08× 107 1.78× 107±0.11× 107

LA-DCOP 0.1 4.64× 107±0.14× 107 1.65× 107±0.09× 107

LA-DCOP 0.2 4.57× 107±0.18× 107 1.62× 107±0.08× 107

LA-DCOP 0.3 4.48× 107±0.24× 107 1.61× 107±0.09× 107

LA-DCOP 0.4 4.52× 107±0.17× 107 1.64× 107±0.10× 107

LA-DCOP 0.5 4.40× 107±0.23× 107 1.61× 107±0.10× 107

LA-DCOP 0.6 4.51× 107±0.03× 107 1.61× 107±0.13× 107

Shortest distance 4.78× 107±0.05× 107 2.39× 107±0.15× 107

Swarm-GAP, in the first scenario of each map (Kobe1 and Kobe 41), outper-
forms other methods by a slight difference. These are a very simple situations
with few fire spots and all methods perform almost equally well.

In the scenarios Kobe2 and Kobe 42, Swarm-GAP outperforms LA-DCOP,
but not the shortest distance heuristic. When there are more fires and they get
bigger, there is a demand for more agents concentrated in clusters. Here, the



 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 4 3 2 1
A

v
er

ag
e 

b
u

il
d
in

g
 a

re
a 

le
ft

Scenario

Shortest distance
Swarm−GAP

LA−DCOP

Fig. 6. Best performance of each method, for the scenarios Kobe1(1), Kobe2(2),
Kobe 41(3), and Kobe 42(4).

stochastic decision of Swarm-GAP agents keep them from performing a more
concentrated effort, and make them waste more simulations cycles to go from
one spot to another. When we increase task stimulus, Swarm-GAP performance
get worse. In LA-DCOP, the agents simply reject tasks for which their capabil-
ities are lower than the associated threshold. In LA-DCOP there is always the
possibility that agents do not allocate any task during a time step, or keep from
accepting distant tasks for a long time. Swarm-GAP agents can also allocate
zero tasks during a time step or neglect far tasks, but when the number of tasks
is high (like in scenario of Kobe 42 map), this occurs with lower probability. In
fact, in an overall average, LA-DCOP number of non-allocated tasks was almost
80% higher than Swarm-GAP.

Our results points that Swarm-GAP, by doing more flexible allocation
choices, enable agents to better divide the tasks, sometimes outperforming LA-
DCOP or performing equally well in comparison to the shortest distance in some
situations.

5 Conclusions and Further Work

The approach introduced here – Swarm-GAP – deals with task allocation in
complex scenarios modeled as DCOPs based on the theoretical models of division
of labor in swarms. This algorithm solves complex DCOPs in an approximated
and distributed fashion.

The experimental results show that the probabilistic decision, based on the
tendency and polymorphism models, allows the agents to make reasonable coor-
dinated actions. In the abstract simulation, Swarm-GAP performs well in com-
parison with LA-DCOP. However, by the nature of its mechanisms, Swarm-GAP
uses less communication and computation than LA-DCOP.

Next, we intend to introduce failures in the simulation regarding the com-
munication channel and agents task perception. This failures contribute to a
realistic analysis of all algorithms. The idea is to evaluate our intuition that
swarm like algorithms are able to deal with communication failures.



6 Acknowledgments

This research is partially supported by the Air Force Office of Scientific Research
(AFOSR) (grant number FA9550-06-1-0517).

References

1. C. Goldman and S. Zilberstein. Decentralized control of cooperative systems:
Categorization and complexity analysis. Journal of Artificial Intelligence Research,
22:143–174, 2004.

2. H. Kitano. Robocup rescue: A grand challenge for multi-agent systems. In Proc.
of the 4th International Conference on MultiAgent Systems, pages 5–12, Boston,
USA, 2000. Los Alamitos, IEEE Computer Society.

3. V. Lesser. Cooperative multiagent systems: A personal view of the state of the art.
IEEE Transactions on Knowledge and Data Engineering, 11(1):133–142, January
1999.

4. R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and P. Varakantham.
Taking DCOP to the real world: Efficient complete solutions for distributed multi-
event scheduling. In Third International Joint Conference on Autonomous Agents
and Multiagent Systems, volume 1, pages 310–317, Washington, DC, USA, July
2004. IEEE Computer Society.

5. P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. An asynchronous complete
method for distributed constraint optimization. In Proc. of the Second Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems, pages
161–168, New York, USA, 2003. ACM Press.

6. R. Nair, T. Ito, M. Tambe, and S. Marsella. Task allocation in the rescue simulation
domain: A short note. In A. Birk and S. Coradeschi, editors, RoboCup 2001: Robot
Soccer World Cup V, volume 2377 of Lecture Notes in Computer Science, pages
751–754. Springer-Verlag, Berlin, 2002.

7. A. Petcu and B. Faltings. A scalable method for multiagent constraint optimiza-
tion. In L. P. Kaelbling and A. Saffiotti, editors, Proceedings of the Nineteenth In-
ternational Joint Conference on Artificial Intelligence, pages 266–271, Edinburgh,
Scotland, August 2005. Professional Book Center.

8. P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe. Allocating tasks in extreme
teams. In Proc. of the Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 727–734, New York, USA, 2005. ACM Press.

9. D. B. Shmoys and v. Tardos. An approximation algorithm for the generalized
assignment problem. Mathematical Programming, 62(3):461–474, 1993.

10. C. Skinner and M. Barley. Robocup rescue simulation competition: Status report.
In A. Bredenfeld, A. Jacoff, I. Noda, and Y. Takahashi, editors, RoboCup 2005:
Robot Soccer World Cup IX, volume 4020 of Lecture Notes in Computer Science,
pages 632–639. Springer-Verlag, Berlin, 2006.

11. G. Theraulaz, E. Bonabeau, and J. Deneubourg. Response threshold reinforcement
and division of labour in insect societies. In Royal Society of London Series B -
Biological Sciences, volume 265, pages 327–332, 2 1998.


