Skip to main content

Analysing Flight Data Using Clustering Methods

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5177))

Abstract

This paper reviews existing forms of density-based, partitional and hierarchical clustering methods in the context of flight data analysis. Advantages and disadvantages are fully explored with a focus on proposing a clustering-based ensemble framework for monitoring flight data in order to search for anomalies during flight operation. Case studies in selected flight scenarios are provided to demonstrate the potential of clustering methods and their integration with reasoning techniques in detecting abnormal flights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duin, R., Juszczak, P., Paclik, P., Pekalska, E., de Ridder, D., Tax, D.: Prtools4, a matlab toolbox for pattern recognition. Technical report, Delft University of Technology (2004)

    Google Scholar 

  2. Dubes, R.C., Jain, A.K.: Algorithms for Clustering Data, vol. 355. Prentice-Hall, Inc., Upper Saddle River (1988)

    MATH  Google Scholar 

  3. Hartigan, J.A., Wong, M.A.: Algorithm as 136: A k-means clustering algorithm. Applied Statistics 28(1), 100–108 (1979)

    Article  MATH  Google Scholar 

  4. Pascual-Marqui, R.D., Pascual-Montano, A.D., Kochi, K., Carazo, J.M.: Smoothly distributed fuzzy c-means: a new self-organizing map. Pattern Recognition 34(12), 2395–2402 (2001)

    Article  MATH  Google Scholar 

  5. Davé, R.N.: Characterization and detection of noise in clustering. Pattern Recognition Letters 12(11), 657–664 (1991)

    Article  Google Scholar 

  6. Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes, 1978, vol. 17 (1978)

    Google Scholar 

  7. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: 2nd International Conference on Knowledge Discovery and Data Mining (1996)

    Google Scholar 

  8. Fu, L., Medico, E.: Flame, a novel fuzzy clustering method for the analysis of dna microarray data. BMC Bioinformatics 8(3) (January 2007)

    Google Scholar 

  9. Hautamaki, V., Karkkainen, I., Franti, P.: Outlier detection using k-nearest neighbour graph. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 3 (2004)

    Google Scholar 

  10. Jin, W., Tung, A.K.H., Han, J.: Mining top-n local outliers in large databases. Knowledge Discovery and Data Mining, 293–298 (2001)

    Google Scholar 

  11. Karypis, G., Han, E.H.S., Kumar, V.: Chameleon: A hierarchical clustering algorithm using dynamic modeling. IEEE Computer 32(8), 68–75 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ignac Lovrek Robert J. Howlett Lakhmi C. Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jesse, C., Liu, H., Smart, E., Brown, D. (2008). Analysing Flight Data Using Clustering Methods. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2008. Lecture Notes in Computer Science(), vol 5177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85563-7_92

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85563-7_92

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85562-0

  • Online ISBN: 978-3-540-85563-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics