Abstract
This paper reviews existing forms of density-based, partitional and hierarchical clustering methods in the context of flight data analysis. Advantages and disadvantages are fully explored with a focus on proposing a clustering-based ensemble framework for monitoring flight data in order to search for anomalies during flight operation. Case studies in selected flight scenarios are provided to demonstrate the potential of clustering methods and their integration with reasoning techniques in detecting abnormal flights.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Duin, R., Juszczak, P., Paclik, P., Pekalska, E., de Ridder, D., Tax, D.: Prtools4, a matlab toolbox for pattern recognition. Technical report, Delft University of Technology (2004)
Dubes, R.C., Jain, A.K.: Algorithms for Clustering Data, vol. 355. Prentice-Hall, Inc., Upper Saddle River (1988)
Hartigan, J.A., Wong, M.A.: Algorithm as 136: A k-means clustering algorithm. Applied Statistics 28(1), 100–108 (1979)
Pascual-Marqui, R.D., Pascual-Montano, A.D., Kochi, K., Carazo, J.M.: Smoothly distributed fuzzy c-means: a new self-organizing map. Pattern Recognition 34(12), 2395–2402 (2001)
Davé, R.N.: Characterization and detection of noise in clustering. Pattern Recognition Letters 12(11), 657–664 (1991)
Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes, 1978, vol. 17 (1978)
Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: 2nd International Conference on Knowledge Discovery and Data Mining (1996)
Fu, L., Medico, E.: Flame, a novel fuzzy clustering method for the analysis of dna microarray data. BMC Bioinformatics 8(3) (January 2007)
Hautamaki, V., Karkkainen, I., Franti, P.: Outlier detection using k-nearest neighbour graph. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 3 (2004)
Jin, W., Tung, A.K.H., Han, J.: Mining top-n local outliers in large databases. Knowledge Discovery and Data Mining, 293–298 (2001)
Karypis, G., Han, E.H.S., Kumar, V.: Chameleon: A hierarchical clustering algorithm using dynamic modeling. IEEE Computer 32(8), 68–75 (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jesse, C., Liu, H., Smart, E., Brown, D. (2008). Analysing Flight Data Using Clustering Methods. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2008. Lecture Notes in Computer Science(), vol 5177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85563-7_92
Download citation
DOI: https://doi.org/10.1007/978-3-540-85563-7_92
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85562-0
Online ISBN: 978-3-540-85563-7
eBook Packages: Computer ScienceComputer Science (R0)