Abstract
Spatial-Temporal clustering is one of the most important analysis tasks in spatial databases. Especially, in many real applications, real time data analysis such as clustering moving objects in spatial networks or traffic congestion prediction is more meaningful.Extensive method of clustering moving objects in Euclidean space is more complex and expensive. This paper proposes the scheme of clustering continuously moving objects, analyzes the fixed feature of the road network, proposes a notion of Virtual Clustering Unit (VCU) and improves on the existing algorithm. Performance analysis shows that the new scheme achieves high efficiency and accuracy for continuous clustering of moving objects in road networks.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. New Jersey Prentice-Hall Advanced Reference Series, pp. 1–334 (1988)
Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic Subspace Clustering of High Dimensional Data for Data Mining Application. In: Proc. ACM SIGMOD Int’l Conf. Management of Data (SIGMOD 1998), pp. 94–105 (1998)
Ankerst, M., Breunig, M., Kriegel, H.P., Sander, J.: OPTICS: Ordering Points to Identify the Clustering Structure. In: Proc. ACM SIGMOD Int’l Conf. Management of Data (SIGMOD 1999), pp. 49–60 (1999)
Ng, R., Han, J.: Efficient and Effective Clustering Method for Spatial Data Mining. In: Proc. 20th Int’l Conf. Very Large Data Bases (VLDB 1994), pp. 144–155 (1994)
Kaufman, Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley and Sons, Inc., Chichester (1990)
Kalnis, P., Mamoulis, N., Bakiras, S.: On Discovering Moving Clusters in Spatiotemporal Data. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 364–381. Springer, Heidelberg (2005)
Li, Y., Han, J., Yang, J.: Clustering Moving Objects. In: Proc. 10th ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining(KDD 2004), pp. 617–622 (2004)
Tung, A.K.H., Hou, J., Han, J.W.: Spatial clustering in the presence of obstacles. In: Proc. of the 17th Int’l Conf. on Data Engineering (ICDE), pp. 359–367. IEEE Computer Society, Heidelberg (2001)
Yiu, M.L., Mamoulis, N.: Clustering Objects on a Spatial Network. In: SIGMOD, pp. 443–454 (2004)
Lai, C., Wang, L., Chen, J., Meng, X., Xu, J., Zeitouni, K.: Effective Density Queries for Moving Objects in Road Networks. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 200–211. Springer, Heidelberg (2007)
Li, Y.J.: A clustering algorithm based on maximal -distant subtrees. Pattern Recognition 40(5), 1425–1431 (2007)
Jensen, C.S., Lin, D., Ooi, B.C.: Query and Update Efficient B-Tree Based Indexing of Moving Objects. In: 30th Int’l Conf.Very Large Data Bases (VLDB 2004), pp. 768–779 (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, W., Wang, Z., Feng, J. (2008). Continuous Clustering of Moving Objects in Spatial Networks. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2008. Lecture Notes in Computer Science(), vol 5178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85565-1_67
Download citation
DOI: https://doi.org/10.1007/978-3-540-85565-1_67
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85564-4
Online ISBN: 978-3-540-85565-1
eBook Packages: Computer ScienceComputer Science (R0)