Skip to main content

Continuous Clustering of Moving Objects in Spatial Networks

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5178))

Abstract

Spatial-Temporal clustering is one of the most important analysis tasks in spatial databases. Especially, in many real applications, real time data analysis such as clustering moving objects in spatial networks or traffic congestion prediction is more meaningful.Extensive method of clustering moving objects in Euclidean space is more complex and expensive. This paper proposes the scheme of clustering continuously moving objects, analyzes the fixed feature of the road network, proposes a notion of Virtual Clustering Unit (VCU) and improves on the existing algorithm. Performance analysis shows that the new scheme achieves high efficiency and accuracy for continuous clustering of moving objects in road networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. New Jersey Prentice-Hall Advanced Reference Series, pp. 1–334 (1988)

    Google Scholar 

  2. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic Subspace Clustering of High Dimensional Data for Data Mining Application. In: Proc. ACM SIGMOD Int’l Conf. Management of Data (SIGMOD 1998), pp. 94–105 (1998)

    Google Scholar 

  3. Ankerst, M., Breunig, M., Kriegel, H.P., Sander, J.: OPTICS: Ordering Points to Identify the Clustering Structure. In: Proc. ACM SIGMOD Int’l Conf. Management of Data (SIGMOD 1999), pp. 49–60 (1999)

    Google Scholar 

  4. Ng, R., Han, J.: Efficient and Effective Clustering Method for Spatial Data Mining. In: Proc. 20th Int’l Conf. Very Large Data Bases (VLDB 1994), pp. 144–155 (1994)

    Google Scholar 

  5. Kaufman, Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley and Sons, Inc., Chichester (1990)

    Google Scholar 

  6. Kalnis, P., Mamoulis, N., Bakiras, S.: On Discovering Moving Clusters in Spatiotemporal Data. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 364–381. Springer, Heidelberg (2005)

    Google Scholar 

  7. Li, Y., Han, J., Yang, J.: Clustering Moving Objects. In: Proc. 10th ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining(KDD 2004), pp. 617–622 (2004)

    Google Scholar 

  8. Tung, A.K.H., Hou, J., Han, J.W.: Spatial clustering in the presence of obstacles. In: Proc. of the 17th Int’l Conf. on Data Engineering (ICDE), pp. 359–367. IEEE Computer Society, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Yiu, M.L., Mamoulis, N.: Clustering Objects on a Spatial Network. In: SIGMOD, pp. 443–454 (2004)

    Google Scholar 

  10. Lai, C., Wang, L., Chen, J., Meng, X., Xu, J., Zeitouni, K.: Effective Density Queries for Moving Objects in Road Networks. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 200–211. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Li, Y.J.: A clustering algorithm based on maximal -distant subtrees. Pattern Recognition 40(5), 1425–1431 (2007)

    Article  MATH  Google Scholar 

  12. Jensen, C.S., Lin, D., Ooi, B.C.: Query and Update Efficient B-Tree Based Indexing of Moving Objects. In: 30th Int’l Conf.Very Large Data Bases (VLDB 2004), pp. 768–779 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ignac Lovrek Robert J. Howlett Lakhmi C. Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, W., Wang, Z., Feng, J. (2008). Continuous Clustering of Moving Objects in Spatial Networks. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2008. Lecture Notes in Computer Science(), vol 5178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85565-1_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85565-1_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85564-4

  • Online ISBN: 978-3-540-85565-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics